
AD-A245 768

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC
FEB 12 19-20

D . THESIS
FUNCTION ALLOCATION IN

A ROBUST DISTRIBUTED
REAL-TIME ENVIRONMENT

by

Karen Kay Lehman

December 1991

Thesis Advisor: Shridhar B. Shukla
Co-Advisor: Chyan Yang

Approved for public release; distribution is unlimited

92-03497
9 2 it 101-t

Unclassified
Security Classification of this page

REPORT DOCUMENTATION PAGE
1a. Report Security Classification lb. Restrictive Markings

UNCLASSIFIED
2a. Security Classification Authority 3. Distribution Availability of Report

2b. Declassification/Downgrading Schedule Approved for public release;
distribution is unlimited.

4. Pei-forming Organization Report Number(s) 5. Monitoring Organization Report Number(s)

6a. Name of Performing Organization 6b. Office Symbol 7a. Name of Monitoring Organization

Naval Postgraduate School (if applicable) Naval Postgraduate School
I EC

6c. Address (City, State, and ZIP Code) 7b. Address (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

Sa. Namne of Funding/Sponsoring 8b. Office Symbol 9. Procurement Instrument Identification Number
Organization j (if applicable)

Sc. Address (City, State, and ZIP Code) 10. Source of Funding Numbers

Program Project No. Task No. Work Unit
Element Number Accession No.

11. Title (Include Security Classification)

Function Allocation in a Robust Distributed Real-Time Environment
12. Personal Author(s)

Lehman, Karen Kay
13a. Type of Report 13b. Time Covered 14. Date of Report (Year, Month, Day) 15, Atge Count

Master's Thesis From To December 1991
16. Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the Department of Defense or the United States Government.
17. Cosati Codes 18. Subject Terms (Continue on reverse if necessary and identify by block number)

Field Group Subgroup Node Failure/Repair, Transparency, Distributed Real-Time, Migration,
Static/Dynamic Allocation,

19. Abstract (Continue on reverse if necessary and identify by block number)

Critical real-time computing systems are characterized by a stringent set of reliability and performance
requirements. Distributed systems, often defined to encompass a broad class of loosely coupled computer
systems, are an effective means of achieving reliability and increasing system throughput. Among the many
desirable characteristics that can be achieved at the application level using .such a system are dynamic
response to changing processing loads of functions (tasks) and exploitation of inherent parallelism using
distribution. In these systems, functions must be assigned and scheduled in an attempt to be completed prior
to their deadlines. Initial assignment of functions to processors (nodes) must not preclude their subsequent
dynamic reassignment/reconfiguration in response to load changes or failure/repair. These allocation and
reconfiguration methodologies are as diverse as their applications. A technique to manage the complexity of
building such a system is a layered architecture with reconfiguration accomplished by an individual layer of
software.

20 Distribution/Availability of Abstract 21. Abstract Security Classification

E0 unclassified/unlimited 0sane as report O:' DTIC users UNCLASSIFIED
22a. Name of Responsible Individual 22b. Telephone (Include Area Code) 22c. Office Symbol

Shridhar B. Shukla (408) 646-2764 EC/Sh
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted security classification of this page

All other editions are obsolete Unclassified
i__

Unclassified
Security Classification of this page

19. ABSTRACT Continued:

This thesis investigates allocation and reconfiguration algorithms. The proposed scheme for initial allo--
cation is based on load balancing utilizing estimated execution times of the functions. The approach with
respect to reconfiguration, simulated using concurrent Ada processing for a four node distributed system, is
based on globally ordered broadcast communications between functions of the application program.

Security Classification of this page

Unclassified
ii

Approved for public release; distribution is unlimited

Function Allocation in a Robust Distributed Real-Time Environment

by

Karen K. Lehman
Lieutenant, USN

B.S.C.S., Pennsylvania State Uni'iersity, 1983

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

December 1991

Author: I ACce si o ,F o r

(a C . ' JL lIc 1 . ,TiS CRA&'
Karen K. Lehman ,iC Iu _

Approved by::By
CIA[t. ibtion /

Shridhar B. Shukla, Thesis Advisor h -

Chyan rang, Thesis o--Advis lr L [_

Michael A. Morgan, Chairrn
Department of Electrical and Computer Engineering

\ ,-

ABSTRACT

Critical real-time computing systems are characterized by a stringent set of

reliability and performance requirements. Distributed systems, often defined to en-

compass a broad class of loosely coupled computer systems, are an effective means of

achieving reliability and increasing system throughput. Among the many desirable

characteristics that can be achieved at the application level using such a system are

dynamic response to changing processing loads of functions (tasks) and exploitation

of inherent parallelism using distribution. In these systems, functions must be as-

signed and scheduled in an attempt to be completed prior to their deadlines. Initial

assignment of functions to processors (nodes) must not preclude their subsequent

dynamic reassignment/reconfiguration in response to load changes or failure/repair.

These allocation and reconfiguration methodologies are as diverse as their applica-

tions. A technique to manage the complexity of building such a system is a layered

architecture with reconfiguration accomplished by an individual layer of software.

This thesis investigates allocation and reconfiguration algorithms. The proposed

scheme for initial allocation is based on load balancing utilizing estimated executioil

times of the functions. The approach with respect to reconfiguration, simulated using

concurrent Ada processing for a four node distributed system, is based o-j globally

ordered broadcast communications between functions of the applicatic:j program.

i-

TABLE OF CONTENTS

INTRODUCTION 1

A. GENERAL......................................1I

B. AIM OF THE STUDY..............................1I

C. METHOD OF APPROACH...........................3

D. ORGANIZATION..................................5

I.ISSUES IN ROBUST DISTRIBUTED SYSTEMS............... 6

A. GENERAL...................................... 6

B. ALLOCATION................................... 6

C. OTHER RECONFIGURATION FACTORS.................7

D. NODE STATUS TABLE............................. 8

1. Common Section................................9

2. Unique Section................................ 10

3. Node Identification............................. 11

4. Other Variables................................11

E. SUMMIARY......................................12

IIFUNCTION ALLOCATION..............................13

A. GENERAL..................................... 13

B. STATIC ALLOCATION............................ 13

1. Initial Function Allocation Example.................. 15

C. DYNAMIC ALLOCATION........................... 18

1. Approaches...................................18

I.RECONFIGURATION FRAMEWORK..................... 22

A. GENERAL..................................... 22

v

B. FUNCTION OFF RECEIVED 22

C. FUNCTION ON RECEIVED 23

D. NODE OVERLOAD 23

E. NODE FAILURE 25

F. NODE RECOVERY 25

V. RECONFIGURATION ALGORITHMS 28

A. GENERAL 28

B. FUNCTION OFF MESSAGE PROCESSING 28

C. FUNCTION ON MESSAGE PROCESSING 28

D. NODE OVERLOAD PROCESSING 30

E. NODE FAILURE PROCESSING 33

F. NODE RECOVERY PROCESSING 34

VI. SIMULATION RESULTS AND PROGRAM SPECIFICATIONS . . . 37

A. GENERAL 37

B. SUPPORTING TASKS 37

C. RECONFIGURATION COMPONENTS 38

D. RECONFIGURATION RESULTS 39

E. TAMITATIONS AND FUTURE WORK 41

F. SUM M ARY 43

VII. CONCLUSION 44

A. GENERAL 44

B. STATIC ALLOCATION 44

C. DYNAMIC ALLOCATION 44

D. PROCESSING OF ALGORITHMS 45

E. SUM M ARY 46

APPENDIX A: SIMULATION CODE 47

vi

APPENDIX B: SIMULATION OUTPUT......................90o

REFERENCES...96

INITIAL DISTRIBUTION LIST...............................97

Vi1

LIST OF TABLES

3.1 Variables Describing Function Characteristics 16

3.2 Ordered List Of Functions To Be Assigned 17

3.3 Function Assignment To Balance The Load 18

4.1 Example Of Overload On Node 1 24

4.2 Reconfiguration After Node Overload 25

4.3 Node Configuration After Node Failure 26

4.4 Node Configuration After Node Recovery...27

viii

LIST OF FIGURES

1.1 A Loosely Coupled Distributed System 2

1.2 Software Layer Configuration at Each Node 4

2.1 Node Status Table 9

3.1 Function Allocation Algorithm 21

5.1 Processing of a Fnoff at a Node 29

5.2 Processing of Fnon at a Node 31

5.3 Node Overload High-Level Description Algorithm 33

5.4 Node Failure High-Level Description Algorithm 35

5.5 Node Recovery High-Level Description Algorithm 36

6.1 Reconfiguration Events upon Node Overload 40

6.2 Reconfiguration Events upon Node Failure and Recovery 42

ix

I. INTRODUCTION

A. GENERAL

One of the goals of distributed systems is to achieve fast and efficient reconfigu-

ration. Distributed systems are systems in which multiple nodes are working together

in the solution of a single problem. The fundamental characteristic of a distributed

system is its ability to map individual logical functions of an application program onto

many physical nodes. These dynamically relocatable functions are to perform con-

sistentlv without regard to their physical location. Additionally, the system should

be able to withstand a reasonable number of node overloads, failures, and recoveries

without severe degradation of the system throughput. Therefore, the reconfiguration

algorithms should be fast and efficient to prevent system degradation as much as

possible. The resulting dynamic reassignment of functions must attempt to minimize

communication as well as maintain a balanced load among the nodes. Minimization

of recovery time is also desirable.

The proposed approach to minimize recovery time and system degradation is

to replicate code at each node. Replication of code minimizes the overhead required

when transferring functions during reconfiguration. It also speeds up the recovery

time which, in turn, alleviates system degradation.

B. AIM OF THE STUDY

Design of a framework necessary to support the (re)configuration of a robust,

real-time distributed system is the objective of this thesis. An application is par-

titioned into multiple functions that are distributed among the nodes. Robustness

is achieved by duplication of the function code at each node; however, a function is

I

Network Communication Layer (NCL)

NI N2 N3 N4

Figure 1.1: A Loosely Coupled Distributed System

active/executing at only one node at any time. The scope of this thesis is to provide

a solution to the initial dis'ribution of multiple functions onto the nodes comprising

a system as shown in Figure 1.1, which is reproduced from another paper [Ref. 1].

This figure shows that a low-level communication software, called the Network Com-

munication Layer (NCL), connects all the nodes so that a reliable global ordering of

messages transmitted and received is seen by all the nodes. Reconfigucation of func-

tions is necessitated in the event of node overload, failure, and recovery by migrating

functions.

To achieve both initial allocation and reconfiguration, fast and efficient algo-

rithms are to be provided which attempt to maximize system performance as much

as possible. Two factors that are utilized in maximizing the performance are load

and intermodular (function) communication (IMC). The load defines how much of

a node's processor time is scheduled for function processing. IMC is the function-

to-function communication required to facilitate execution of the program logically

distributed among several nodes. These two factors are conflicting because an evenly

distributed load among the nodes is desired in conjunction with low IMC. However, by

evenly distributing the load, IMC tends to increase because two functions with high

2

mutual IMC may possibly get assigned to two different nodes. The key issue is to bal-

ance these factors in the algorithms used to implement allocation and reconfiguration

procedures.

C. METHOD OF APPROACH

The emphasis of this thesis is to provide allocation and reconfiguration algo-

rithms for a loosely coupled distributed system. Each node of this system contains

three individual layers which maintain their own functionality. The proposed node

configuration in terms of the functionality of each iayer and their interrelationship

is shown in Figure 1.2 which is reproduced from another paper [Ref. 1]. The Ap-

plication Laver (AL), Location Invariant Function-to-Function Communication Layer

(LIFFCL), and the Reconfiguration Layer (RL) operate concurrently and interface ap-

propriately to maintain communication between dynamically relocatable distributed

functions. The arcs with only one arrowhead indicate that the particular component

has a one-way communication with other components that are pointed to. Likewise,

arrowheads at each end of an arc indicates two-way communication. The heavy ar-

row and lines connecting all components of RL to Output Server (OS) designates that

these components of RL must communicate with OS.

The AL manages the processing of the active functions of a node. It must

communicate with both the LIFFCL and RL. AL functionality is to be specified by a

follow-on thesis. The LIFFCL manages the incoming and outgoing messages of a node.

Additionally, checkpointing and the generation of health messages is processed in this

layer. The details of the specific components of LIFFCL can be found in another thesis

[Ref. 2]. The RL handles the assignment of functions for reconfiguration and is the

main emphasis of this thesis. Details of this layer are described in depth later in this

thesis.

3

AL

RL

(mNoFF FN..ON
NO NR EC N

IsI

NCL

Figure 1.2: Software Layer Configuration at Each Node

Function allocation can be either static, dynamic, or a combination of both.

Static allocation tends to reduce/eliminate the run-time execution overhead inherent

in dynamic allocation [Ref. 3]. Initial static function allocation assumes complete a

priori knowledge of all functions and is designed to evenly distribute the load among

system nodes [Ref. 4]. Dynamic allocation is more complex than static, but the

allocation result tends to be better because it can adapt to actual program execution.

In static allocation, the a priori attributes of the functions are at best approximations.

For dynamic allocation, it has been shown that more efficient algorithms perform

almost as well as the more complex algorithms. Therefore, it is more cost effective

to use a simple initial function assignment followed by dynamic reconfiguration when

necessary. The approach that is taken is to use static allocation only for initial

assignment. Dynamic allocation is utilized for reconfiguration due to node overload,

node failure, and node recovery. Utilizing both methods enables the factors of load

and IMC to be balanced. [Ref. 5]

4

D. ORGANIZATION

This thesis is organized as follows. Chapter II discusses the issues of a dis-

tributed system and the supporting resources necessary to achieve these objectives of

transparency with respect to changes in node status and efficient management of the

processing resources. Chapter III explains the different function allocation algorithms

and describes the algorithms proposed for implementation. The framework necessary

to implement the reconfiguration algorithms is explained in Chapter IV. Chapter V

contains the detailed description of state diagrams and the high-level description of

these reconfiguration algorithms. An overview of the implementation software and the

simulation results are contained in Chapter VI. Chapter VII contains the conclusion.

5

II. ISSUES IN ROBUST DISTRIBUTED
SYSTEMS

A. GENERAL

As mentioned in Chapter I, a distributed system consists of multiple functions

logically distributed onto many physical nodes. This pattern of distribution defines

the system software configuration. Numerous factors influence the development of this

configuration. which directly impacts the throughput or performance of the system.

Some of the more obvious factors include: function allocation, reconfiguration., main-

taining the state and status of all system functions and nodes, as well as the ordering

of function events (messages). In critical real-time systems, timely completion of all

functions is paramount and requires fast and efficient allocation and reconfiguration

algorithms. Allocation and reconfiguration algorithms require a globally consistent

description of the system state upon which to base relocation decisions. To properly

support the algorithms that determine the instantaneous configuration of the system,

all nodes are required to have access to the same system state information. Since no

resources are shared between the nodes, each node must retain its own copy of all

system state information. What follows is the characterization of how and why this

system is configured as it is and what factors play a role in this configuration. The

sections which cover the maintenance of the global state of the system are covered in

detail in another thesis but are briefly discussed below [Ref. 2].

B. ALLOCATION

Allocation algorithms determine the node where functions are executed. In

determining a function's location, consideration must be given to the function-to-

6

function communication (MC). An associated cost is the interprocessor communi-

cation (IPC) which is a function of IMC. IPC is caused by the processing overhead

incurred when software functions resident on different nodes must communicate. As-

signing two functions with high mutual IMC to different nodes increases IPC, whereas

collocation reduces their IPC to zero. However, two functions with low mutual IMC

assigned to different nodes may in fact speed up overall processing time. IMC is

an important consideration when determining which function is to be migrated and

which node receives it. Functions' attributes must be known at compile-time so that

distribution among nodes can be completed effectively. This a priori information

tells the function's priority, how long it needs for processing (execution time), peri-

odicity, and it's deadline time. Normally, if a function cannot be completed by its

deadline time, it is transferred to a node that can complete it. Function migration

requires current system state information in order to prevent degradation of the sys-

tem. A function information array is utilized to store these attributes as well as other

characteristics based on the processing time of a particular function. [Ref. 6]

C. OTHER RECONFIGURATION FACTORS

Other factors that determine how reconfiguration takes place is the maintenance

of function statistics, a node's status and load, and the routing of messages. Main-

tenance of a function's state allows for ease of transportability and minimizes the

communications required for this migration. The node status indicates which nodes

are active. The reconfiguration algorithms utilize this to prevent from sending a func-

tion to a non-active node. The load of the node is what indicates how much processor

time is available. This load designates whether a node is underloaded, fullyloaded,

or overloaded. RL also uses this in determining the most appropriate node to receive

a function upon migration. Utilizing the load minimizes system degradation by pre-

7

venting the migration of a function to a fully or overloaded node unless absolutely

necessary as in the case of a node failure. Although the RL uses the status and load

of the nodes, they are updated and maintained by the LIFFCL. Routing is also main-

tained by the LIFFCL. It must direct data messages either to the AL for processing

or to the non-active function queues. These queues, one for each function of the

system, are utilized to hold all data messages sent to each particular function. The

queues help minimize communications when reconfiguration is necessary due to node

overload, failure, or recovery. The details of the maintenance of these four factors are

described in another thesis [Ref. 2].

For reconfiguration, each node requires access to the information described

above which defines the global state of the system at any point in time. For this

reason, a resource called the Node Status Table (NST) is constructed at each node to

contain this information. The general approach is to keep the NST consistent using

the property of globally ordered broadcast messages in the network. Additionally, it

is used to ensure transparency with respect to node overload, failure, and recovery.

A detailed description of the NST is listed in the following section, and a diagram

showing its contents can be found in Figure 2.1 which is reproduced from another

paper [Ref. 1].

D. NODE STATUS TABLE

The NST consists of three sections. The common section contains information

that is utilized for reconfiguration and is common to every node. The unique section

contains all the information unique to the functions that are active on each node, and

the last section contains the node identification. Each node maintains two complete

copies of the NST; the duplicate copy is utilized as a backup only. Variables contained

in the NST, which are used by the reconfiguration algorithms, describe the health of

8

COMMON SECTION

IMC

FNLOC
NODESTATLD

UNIQUE SECTION

NI fn 1 function variables
fn 2

N2

Nn
fn k

NODE ID

Figure 2.1: Node Status Table

all nodes, the location of all functions, the last message received and the last message

processed for each of the system functions.

1. Common Section

The common section contains a priori information on which allocation and

reconfiguration algorithms are based in addition to the current assignment of the

functions and the loading data of each node.

The IMC matrix contains static entries that are an indication of the amount

of function-to-function communications. The diagonal of the matrix contains zeros

indicating no self communication. The IMC is used in the overload and failure algo-

rithms to determine which node a function migrates to.

9

The Node Status and Load Array (NODESTATLD) contains both the

status and the load. The status indicates if a node is up or down. The load is

an indicator of how much excess processor time a node has. The reconfiguration

algorithms use these variables to determine the most appropriate node(s) to receive

function(s).

The Function Location Array (FNLOC) indicates the node where each

function is active. It changes upon node overload, failure, and recovery. This is used

heavily in the algorithms for reconfiguration, particularly in determining the total

IMC for a given node.

2. Unique Section

The unique section contains the latest operational statistics for each func-

tion within the system. The unique section consists of N sections (N equals the total

number of nodes in the system) with each containing an array of records, one for

each active function of a node. The information contained in each record comprises

the characteristics and the current state of a function. The records are updated dur-

ing checkpointing, recovery, function migration, and upon expiration of a function's

processor time slice.

The Function Information Array (FNINFO) contains the following at-

tributes: priority, periodicity, execution time, and deadline time. These attributes

are a priori information known at the time of initial function allocation. The prior-

ity is only used during initial allocation. The other three attributes are maintained

by the AL and used in computing the load of a node. In addition to the a priori

variabies in FNINFO, AL also maintains four dytani variables for each function.

Two of the variables are time to completion (TTC) and time to deadline (TTD).

These change each time a function's processor time slice expires. The two other vari-

ables are maintained to keep track of the last message arriving for an active function

10

(LASTISGREC) and the last message processed (LAST-MSGPROC) by AL for

an active function. LASTMSGREC and LASTMSGPROC are utilized to modify

the queues used for storage of the messages destined for the non-active functions at a

particular node. These four variables allow a function's processing to continue at the

point where it left off prior to migration. Otherwise. rollback to the last checkpoint

is necessary for all function migration. However, if a node fails, it's current unique

section is not accessible to the new node; therefore, a rollback is necessary. Rollback

and checkpointing are covered in detail in another thesis [Ref. 2].

3. Node Identification

Each node is required to have an identity. It is mainly used to distinguish

the node that currently has processor time since all nodes share the same processor

for the simulation of this distributed system. The complete listing of the simulation

code can be found in Appendix A.

4. Other Variables

In addition to the variables mentioned above, local variables are maintained

at each node to conduct recovery, checkpointing, and queue management.

Recovery variables are utilized to determine when a node is back up. Check-

pointing variables indicate when the NST has been updated in its entirety. Queue

management handles the incoming data messages and directs them to tLeir proper

queues. Since there is limited space in these queues, messsages already processed for

a given function must be deleted periodically. Management is also required for the

transmission of messages to and from the LIFFCL via the NCL. The variables used

for cach of the three procedures mentioned above and the management of the function

queues are specified in another thesis [Ref. 2].

11

E. SUMMARY

As indicated throughout this chapter, knowledge of the global state of a dis-

tributed system is fundamental in the implementation of reconfiguration efforts. Un-

necessary communications are avoided during function migration by each node stor-

ing all message traffic. This enables the recovery time of function migration due to

node overload and node failure to be minimized. Additional overhead is required

to maintain the NST; however, the overhead is more than compensated for by the

NST enabling the reconfiguration algorithms to be faster and more efficient. Utiliz-

ing this NST allows for transparency of reconfiguration to the end user. The NST is

what maintains the global state, and without this resource, more complex algorithms

with increased overhead are necessary to manage reconfiguration. Additionally, if the

information is not current, the reconfiguration decisions cannot maximize the sys-

tem throughput. The algorithms utilizing the NST data are covered in the following

chapters and demonstrate the necessity to keep this information current.

12

III. FUNCTION ALLOCATION

A. GENERAL

In a loosely coupled distributed processing system, some of the function allo-

cation considerations encompass IMC as well as load balancing. These are conflict-

ing factors because load balancing maximizes throughput by distributing functions

among nodes whereas the distribution increases the overhead incurred. Therefore,

these factors must be balanced in order to achieve optimal system performance as

measured by system throughput [Ref. 6]. Function allocation can be either static or

dynamic. Static allocation tends to reduce/eliminate the execution overhead inher-

ent in dynamic allocation [Ref. 3]. Static function allocation is based on estimated

execution time and function priority for system initialization and designed to achieve

load balancing. Dynamic reconfiguration is more complex than static allocation, but

the additional overhead required is justified because the algorithms are based on the

most current run-time statistics of each of the nodes. Reconfiguration due to node

failure, node overload, or node recovery utilizes dynamic allocation and reflects time

constraint considerations as well as IPC/IMC costs. The cost of IPC is measured

in terms of the amount of data transferred among functions assigned to different

processors [Ref. 7].

B. STATIC ALLOCATION

Static function allocation methods utilize each function's attributes to distribute

the functions among the nodes accordingly. One proposal for static allocation is the

Heavy Node First (IINF) algorithm. In using the HNF algorithm, the program must

be representable by a Directed Acyclic Graph (DAG). A node of a DAG represents an

13

operation, and the directed edge represents the precedence among the nodes. Each

node is associated with a total computation weight. Utilizing a DAG requires that the

program behavior be predictable. However, constructs such as loops and conditionals

introduce uncertainty in program behavior. This prevents using DAGs to represent

a program. HNF attempts to maximize the number of parallel operations and/or

minimize the execution delays. This algorithm keeps track of total weight at each

node. HNF first assigns the functions in descending order of weight until all functions

are assigned. The algorithm continually keeps track of the nodes with the maximum

total weight and the minimum weight, as well as the weight of the next function to be

assigned and its successor in order to determine which node gets the next function.

It was from this HNF algorithm that the Light Node First (LNF) algorithm was

developed. [Ref. 3]

LNF encompasses major ideas from HNF, but it utilizes them in a different fash-

ion. Accomplishment of this assignment algorithm requires functions to be available

in descending order of estimated execution time (weight). Functions are allocated

sequentially to nodes in node number order. This static allocation procedure ensures

distribution of functions to achieve a balance of execution time on each node. Since

execution time is the "balancing factor", no single node is excessively loaded. Ad-

ditionally, once all functions are assigned, the priority number of each function is

utilized to obtain the chronological order of execution of the functions assigned to a

given node. This priority number is determined at the time a program is partitioned

into functions. Since a program may have precedences, the function-to-function de-

pendency becomes important. As an example, say function A was dependent on a

variable generated from function B, and both A and B are active on the same node.

Obviously. B must get processor time first in order to pass the correct value of the

variable to A. Therefore, B has a higher priority than A. It's the logical ordering of

14

the program and the sequence of events which designates the priority number.

Static allocation methods have inherent shortfalls. In order to implement static

methods, all estimated run-time knowledge of the function must be known at compile

time [Ref. 8]. The HNF algorithm's major shortfall is the fact that a DAG is required

i.e., not all programs are predictable and thus cannot be represented by a DAG. A

shortfall of the LNF method is that IPC cost is ignored and can be very high. However,

this situation tends to balance itself out after system initialization, because relocation

of functions due to node overload and node failure are based on the IPC/IMC costs.

1. Initial Function Allocation Example

The following is a example of the workings of the function allocation. As-

sumptions are made that the functions to be allocated are available in an array ordered

by execution time along with the attributes that are contained in Table 3.1.

The static items are located in the FNJNFO array of each record for a

function. The dynamic items are updated by the AL and stored in the same record

as the FNINFO array. The initial function allocation algorithm goes through the list

of functions and assign them according to the weights. Allocation only uses the ET

and the priority. The remaining variables are used by the AL to determine the load

and by the RL when it is necessary for function migration. In addition, a priority

number is assigned to each function. This priority number, as explained previously,

designates the function order of processing after static allocation only.

The functions are pro' ided in descending order by weight upon initial as-

signment. For i=1 to N, the ith function from the ordered array is assigned to the

ith node i.e., the first function in the list is activated at Node 1. After each nodce

has received one function, the next N successive functions are assigned to the nodes

in reverse order i.e., from Nodc A back dawn to Node 1. This process continues in

a snake-like fashion until all functions are assigned. Once all functions are assigned,

15

TABLE 3.1: VARIABLES DESCRIBING FUNCTION CHAPACTERIS-
TICS

Functionc? Description

Prioritv used for static allocation only
to order the function processing

Periodicitv reflects how often a function reoccurs
(static)

Execution Time (ET) indicates the estimated time needed
to process a function (static)

Deadline Time (DL) estimated time a function needs for
processing (slightly larger than
the ET (static)

Time To Completion (TTC) initially equal to ET but changes
when a function gets processing time
(dynamic)

Time To Deadline (TTD) initially equal to DL but changes
when a function gets processing time
(dynamic)

16

each node's functions are ordered in ascending order by priority number. The results

of this allocation procedure are equivalent to the Least Node First (LNF) algorithm.

The algorithm is executed at all nodes since at this time there is no other

processing going on. No interruptions are necessary at the other nodes because there

is no need of sending communications to each node as they can set up their own arrays

of the NST at that time. Each time a function is determined to go to a particular

node, the nodes can update the k x I FN_LOC array in the NST (k equals the total

number of functions).

If only one node does the algorithm, it has to send at least k communication

messages telling all nodes who gets each function. In order to have flexibility, each

node processes the algorithm because the one designated to determine this may be

down.

An example of the ordering of functions based on their execution time is

shown in Table 3.2. The actual assignment of the functions listed in Table 3.2 is

depicted in Table 3.3 with the functions in order by priority number. The total load

(execution time) designated in Table 3.3 shows that nodes are balanced fairly evenly.

The high-level description algorithm that implements this static allocation is shown

in Figure 3.1.

TABLE 3.2: ORDERED LIST OF FUNCTIONS TO BE ASSIGNED

Functions Execution Time Priority

2 100 6

5 80 3
4 60 2

3 40 1
1 35 4
6 15 5

17

TABLE 3.3: FUNCTION ASSIGNMENT TO BALANCE THE LOAD

Node No. Assigned Total Execution
I Functions Time (Load)

1 6,2 115

2 5,1 115
3 3,4 100

C. DYNAMIC ALLOCATION

In order to balance the conflicting factors influencing allocation, dynamic allo-

cation is utilized after initial static allocation has occurred. Dynamic reconfiguration

due to node overload, node failure, or node recovery reflects time constraint consid-

erations as well as IPC/INIC costs.

1. Approaches

When it is determined that a function cannot be completed by its dead-

line time (node overload), when a node fails, or when a node recovers, a smooth

transition/migration of the functions(s) must take place. This migration is to be

transparent to the user. Most of the existing allocation models have considered the

minimization of the IPC. The objective of Chu's allocation method is to minimize

the maximum processor loading [Ref. 9]. Other attempts have been made to include

message transmission delays in the communication costs [Ref. 10]. Some of the more

popular methods of reconfiguration are as follows: load sharing (LS), sender initiated

(SI), focused addressing, bidding addressing, random scheduling, and flexible which

is a combination of both focused and bidding addressing. All these methods, except

random scheduling, require each processor to maintain state information from other

processors. Therefore, an efficient means of collecting and updating state informa-

tion, independent of normal IPC, must be developed. LS is composed of the transfer

18

and location policy which is either initiated by its own processor (source) or by the

other processors (servers) [Ref. 11]. When LS is initiated by the source, it is similar

to the SI method. Both of these methods, LS and SI, are very similar to focused

and/or bidding algorithms.

The dynamic reconfiguration algorithms proposed are a type of focused

addressing. The algorithms assign the function(s) to the node(s) capable of com-

pleting the function(s) by the deadline time. Additionally, the IMC as well as the

node's load status are utilized in determining migration. Duplication of code for all

functions at each node and checkpointing both help in minimizing the overhead that

is independent of normal IPC/IMC.

Problems associated with the methods mentioned are listed below. For the

LS method, further investigation is required because no analytical formula is derived

to determine the probability of a function completing by its deadline. In addition, the

queue length isn't sufficient in determining each node's load [Ref. 11]. Consideration

of cumulative execution times of the functions must take place. Random scheduling

requires low overhead in determining the receiving node, but it can easily send the

function to an overloaded node. This is due to its randomness and the fact that it

doesn't utilize the system state information. Bidding and focused addressing incur

more overhead than random scheduling. Focused addressing requires less communi-

cation than bidding, but the data utilized is not as current as that used in bidding.

The flxible addressing attempts to reap the benefits of both bidding and focused

addressing. It has been shown, however, that focused addressing's performance is

more stable and consistent regardless of the load. It is for this reason that focused

addressing is used in the approach to handle the cases of node overload, failure, and

recovery. The problem of data not being current, as mentioned above, can be alle-

viated in focused addressing through the additional use of status messages that are

19

sent periodically to keep load information current. The RL framework encapsulates

the components required to accomplish this reconfiguration and is explained in the

following chapter. [Ref. 12]

20

/* Procedure for Static Allocation: assigns all functions */
/* of array fn(f),the array is assumed to be available at */
/* start-up time, in a snake-like fashion based on execution */
/* time and orders them by the priority number */

task body ALLOCATION is
n : integer := 1;
f: integer := 1;
rev : boolean := false;

begin
GET fn(f) from input array
while fn(f) -$ 0 loop -- assign all the functions

put node n in FNLOC(fn(f)) -- in NST
increment n if not rev;
decrement n if rev;
if n = 4 then

rev := true; -- reverse direction of assignment
end if;
if n = 1 then

rev := false; -- forward direction of assignment
end if;
f=f+ 1;
GET fn(f);

end loop;
if active function at node then

order functions by priority -- send to A/L in order of
--priority

end if;
end ALLOCATION;

Figure 3.1: Function Allocation Algorithm

21

IV. RECONFIGURATION FRAMEWORK

A. GENERAL

RL's objective is to accomplish transparent reconfiguration whenever necessary.

Utilizing bi-directional interfaces with AL and LIFFCL, RL receives fnoff and fnon

messages from Input Server, notification of node failure from Status Monitor, and

notification of node overload from AL. As mentioned previously, the components of

the LIFFCL are covered in another thesis i.e., Input Server and Status Monitor [Ref.

2]. Once notified, the RL utilizes information in the NST to make its reconfiguration

decisions. The specific components of RL are Function Off Received (FNOFFREC),

Function On Received (FNONREC), Node Overload (NO), Node Failure (NF), and

Node Recovery (NR). Each component is discussed in detail in the following sections.

B. FUNCTION OFF RECEIVED

FNOFFREC' s primary purpose is to process fnoff messages. Fnoff messages

result when a node detects overload at its site. Upon receipt of a fnoff message, RLs

at the nodes determine if they are designated to receive the function. This deter-

mination is made by checking a destination field of the fnoff message. In turn, only

the activating node builds and sends a fnon message to the LIFFCL. No additional

communications are required to retransmit data messages for the migrating function

since the last checkpoint because each node saves these messages in queues. However,

management of these queues is required.

22

C. FUNCTION ON RECEIVED

FN_0NREC's primary purpose is to process a fnon message. A fnon message

is generated for two conditions. One is in response to the fnoff message described

above, and the other condition is when a node recovers from failure. A fnon message

is broadcasted to indicate the new location of a function. It also serves as a trigger

to the deactivating and activating nodes to realign the AL i.e., deleting or adding a

function to the active list in AL.

D. NODE OVERLOAD

Node overload results when a node is unable to complete all assigned functions

prior to their deadlines. Functions may be migrated to other nodes provided they are

underloaded. Node Overload is the algorithm that generates the fnoff message. It

determines which function is to be migrated and which node receives it. The function

to be migrated is the one with the most time left to completion until its deadline.

The receiving node is based on IMC and the load status in which load status takes

precedence over IMC. The underloaded node with the largest IMC value accepts the

migrating function. This decreases the IMC and allow all nodes to complete their

functions on time. If equal I.\Cs exist, the node with the smallest ID activates it.

The amount of IMC traffic associated with function migration as a result of node

overload, failure, and recovery is reduced due to the robustness of the system i.e.,

duplication of function code.

An example of node overload is shown in Table 4.1. Referring to this table, Node

I realizes it can't meet the deadlines based on the difference between the local clock

and the DL and then comparing this difference to the TTC. For example, assume

the local clock to be four seconds. Starting with function 2 of Node 1, subtracting

the local clock from TTD gives a value of six. Comparing six to TTC shows that

23

there is just enough time to complete function 2 by its deadline. Now for function 6,

the TTD of function 2 is subtracted from the TTD of function 6 which gives a value

of seven. However, when comparing seven to the TTC value of eight, it shows that

function 6 cannot be completed on time. Therefore, Node I is overloaded and needs

to try and and needs to try and migrate function 6.

Function 6 is migrated to a node that is underloaded. For this example, assume

that Node 2 is fully loaded and Node 3 is underloaded. Thus, function 6 is migrated

to Node 3. The updated configuration is shown Table 4.2. Upon migration, a new

TTD for that function is computed based on the time that the node receives the

function, and an additional allowance of 1 "second" for migration time is added in.

Since storage capacity is fairly inexpensive and readily available, it is assumed

that sufficient storage exists within a node to store all function-to-function traffic

received between checkpoints. This is regardless of whether or not the function is

actually resident/active on the node. Another alternate method requires the LIFFCL

to retransmit ail traffic addressed to the migrating function since the last checkpoint.

This, however, increases the overhead for migration drastically.

TABLE 4.1: EXAMPLE OF OVERLOAD ON NODE 1

Node No. II Function Priority OD L ET[TTC I TTD I Periodicity
1 2 6 10 7 6 10 15

6 5 16 9 8 17 0
2 5 3 8 4 2 8 0

1 4 12 7 4 13 20

3 3 1 8 4 3 9 10
4 2 25 11 10 28 30

24

TABLE 4.2: RECONFIGURATION AFTER NODE OVERLOAD

Node No. Function I Priority DL ET TTC TTD Periodicity I

1 2 6 10 7 6 10 15
2 5 3 8 4 2 8 0

1 4 12 7 4 13 20
3 3 1 8 4 3 9 10

4 2 25 11 10 28 30
L 6 5 16 9 8 18 16

E. NODE FAILURE

Node failure results when a node fails to transmit a periodic health message

within a prescribed time limit. When a node failure occurs, all the functions executing

on it must be recovered at other nodes. Upon detection of a node failure by the

Status Monitor, all active nodes simultaneously begin execution of the Node Failure

algorithm to determine which nodes have to activate the functions currently resident

on the failed node. Each node determined to activate the function(s) sends a fnon

message(s). Although the algorithm results are the same at each node, fnon messages

are still sent to maintain system continuity.

As an example, consider the functions and assignments as described back in

Table 3.3. If Node 2 is down, its functions must be recovered on the other nodes.

For this case of reconfiguration. assume that Node 1 has a higher mutual IMC with

function 1, and Node 3 has a higher mutual IMC with function 5. Therefore, the

reconfiguration is as shown in Table 4.3.

F. NODE RECOVERY

When a node has recovered from failure, it is to be smoothly assimilated into
the workload. Upon detection of its own recovery, the node generates a message to

25

TABLE 4.3: NODE CONFIGURATION AFTER NODE FAILURE

Node Functions TTC
1 6,2,1 150
3 3,4,5 180

trigger other nodes to send information which enables it to rebuild the current state

of the overall system. In particular, the NST is rebuilt from the information sent by

other nodes. The recovered node now possesses the latest system status. When this

process is completed, the node sends another message to indicate that it is up. From

that point, Node Recovery determines which function to turn on at its site. Only the

recovering node determines which function to activate because its NST contains the

most current system status. This is accomplished through the use of a fnon message.

Only one function is turned on at the node, and it may not necessarily be one that

was previously active there. Although it only takes one function, the nodes tend to

balance themselves out over time due to node overloads, etc.

As an example, consider the data listed in Table 4.3. Node 2 is assumed to be

recovered and must determine which function it activates. Additionally, functions

and 5 have just completed execution and have the greatest amount of slack-time.

Therefore, they are the candidates for migration. Based on NST data, Node 2 deter-

mines that the load of Node 3 is larger than that of Node 1. Thus Node 2 activates

function 5. The reconfiguration of this recovery is shown in Table 4.4.

26

TABLE 4.4: NODE CONFIGURATION AFTER NODE RECOVERY

fJ Nodc I Functions I TTC

1 6,2,1 150
2 5 80

3 3,4 100

27

V. RECONFIGURATION ALGORITHMS

A. GENERAL

In order for reconfiguration to occur, bidirectional communication, particularly

between LIFFCL and RL, is required. The components of LIFFCL and RL determine

what the reconfiguration is and generate the messages necessary to accomplish this.

What follows are the algorithms for each component within RL.

B. FUNCTION OFF MESSAGE PROCESSING

When the Input Server receives a fnoff message, it sends the message to RL.

RL, in turn, calls the procedure FNOFFREC to process this message. Upon receipt

of the fnoff, the procedure checks the DEST-NODE field. This field designates the

node which has to turn the function on. Only the activating node takes action by

building and sending the fnon message. The function to be migrated is listed in the

DESTFUNC field. Additionally, the activating node must copy the body of the fnoff

message to the body of the fnon message that it creates. This is necessary because

all action taken by the nodes occurs upon receipt of a fnon message.

A state diagram of the actions taken in the procedure is shown in Figure 5.1.

C. FUNCTION ON MESSAGE PROCESSING

When the Input Server receives a fnon message, it sends the message to RL. RL,

in turn, calls the procedure FNONREC to process this message. Upon receipt of the

fnon message, each node must determine if it is the activating or deactivating node.

If it is either of these two, RL must notify AL to start or terminate the function listed

in DESTFUNC. Additionally, the activating node must modify the unique section of

28

FUNClON OFF
MSG

Parse MSG to

determine FN
designated

Which
Node

non-(de)activating is it? activating

Return deactivating Send

to OS

Return

R eturn

Figure 5.1: Processing of a Fnoff at a Node

29

NST to reflect the function information sent in the message body. This information is

also passed to the AL for further action; it indicates the data message with which the

AL is to begin processing. The function queue manager (not implemented) modifies

the queue for the function based on the LASTMSGREC. All nodes update their

NST's FNLOC array to indicate the function's current location.

A state diagram of the actions taken in the procedure is shown in Figure 5.2.

D. NODE OVERLOAD PROCESSING

Node Overload is initiated by notification from Al . It determines which func-

tion is to be migrated from the overloaded node. The criteria used in designating

which function is moved is based on the a priori information about the function. The

possibility exist, that more than one function cannot be completed on time. Of these

functions, the one with the largest slack-time i.e., largest negative time till comple-

tioi, is migrated. The node to receive the function is an underloaded node with the

largest IMC. If no underloaded node is available for migration, the function remais

at its current node. This prevents unnecessary communications and computations of

a node because it most likely becomes overloaded if a function migrates there.

Node Overload has three major functions. It creates a TRANSNODE array

which identifies the possible nodes to migrate the function to. It also determines

MOVEFN which is a function causing overload and has the largest slack-time or

most negative time remaining. Lastly, it determines which node of TRANS-NODE

has the largest IMC with MOVEFN.

The TRANS-NODE array is built using the NST's NODE.STATLD. If the

load of a node is less than .75, the node number is stored in the array. A simple loop

is used to determine which active function(s) is causing overlead. This deteimination

was explained earlier and accompanied with Tables 4.1 and 4.2.

30

FUNCTION ON
MSG

arse MSG to
determine FN

desgnated

non-(de)activating is it? activating

Update deactivatingNoiyA

NST t o

Modify queue & MSG
Active Fn Bfe

Return queue

Update Update

NST NST

Return Return

Figure 5.2: Processing of Fnon at a Node

31

After determination of TRANS-NODE and MOVEYN, the IMC values are

computed and stored in the NODEJMC array. This is done for each of the nodes

listed in TRANS-NODE. The largest value of NODEIMC designates which node is

to be the NEWNODE. The node number is preserved by TRANSNODE(i) cor-

responding to the IMC value of NODEJMC(i); thus, NEW-NODE gets the value

of TRANSNODE(i). From this point, the fnoff message is built and sent to the

LIFFCL. The message fields DESTFUNC and DEST-NODE are assigned the values

of MOVEYN and NEWNODE respectively. The message body co. ,*,.ns the func-

tion's current unique section, thus reflecting any processing changes since the last

checkpoint. The designated node to receive the migrating function transmits a fnon

message, indicating its activation of the function. Upon receipt of the fnon message,

all nodes update the FNLOC array. Additionally, the receiving node has to update

the function's message queue. If the overloaded node does not receive the fnon mes-

sage prior to a timeout, the function must remain on the overloaded node until at

least the next checkpoint cycle.

If no nodes are underloaded, the overloaded node must keep the function. Mov-

ing a function to a non-underloaded node creates unnecessary communications for

turning the function off and on because the node turning the function on runs a

very high risk of becoming overloaded. This then creates additional computation of

Node Overload at the new node. The reason for moving the function with the most

slack-time is that the probability of completing on time is greater than if it didn't

migrate.

This algorithm can be modified slightly for the AL to use for its computation

of the load of the node. This, however, is recommended for future work.

Allowing the overloaded node to singularly determine both the migrating func-

tion as well as the receiving node minimizes the interruptions of normal processing

32

operations. Additionally, requiring the overloaded node to ensure that the migrating

function is updated with the required message traffic reduces IMC.

The high-level description algorithm of Node Overload is in Figure 5.3.

/* Procedure to determine the function to */
/* migrate and the node to receive it */

procedure Node Overload is
begin

TRANSNODE(i) := underloaded nodes;

MOVEYN := function with largest slack-time;
MODEIMC(i) := total IMC for each node of TRANS-NODE;
determine which node of TRANSNODE(i) has largest IMC

in NODEIMC(i);
build FNOFF msg;
Send FNOFF msg to OS;

end Node Overload;

Figure 5.3: Node Overload High-Level Description Algorithm

E. NODE FAILURE PROCESSING

Node Failure is processed at each node upon detection of a failure. Each node

determines if it is to receive a function. If so, it generates a fnon message. The IMC

is all that is utilized in determining if a node turns on a function. The load is not

considered because the functions active on the failed node must be recovered. Even it

a node becomes overloaded, it is necessary since the overall system has been degraded

due to failure.

Each node sends periodic status messages to indicate that it is up and what

its current load is. At each node, a TIMER array is maintained in the NST for the

Status Monitor to check every so often to determine if the nodes have responded

with their periodic status message. When Status Monitor detects that a periodic

33

message hasn't been received in time, it turns the status of that node to off in the

NODESTATUSLOAD array. Status Monitor then passes the NODED of the failed

node to Node Failure. Node Failure must first determine which functions were

assigned to the failed node. This is accomplished by searching for the NODEJD

in the FNLOC array. Once the assigned functions are known, determination must

be made as to which node(s) is to receive the migrating functions. Determining the

destination node for a migrating function requires the IMC matrix to be searched.

The function is assigned to the node with the functions which require the greatest

amount of communication with the migrating function. If functions on different

nodes have the same IMC value, the node with the smallest ID number receives the

migrating function. The larger the value of an element in the IMC matrix, the more

function-to-function communication required. Assignment in this fashion minimizes

the amount of IMC which is time consuming in this distributed processing design.

All active nodes begin execution of the Node Failure algorithm. The appropriate

nodes build and send fnon messages to the LIFFCL. All nodes update their FN.LOC

array upon receipt of the fnon message. The algorithm is only done in a high-level

description; therefore, it is assumed that the outcome is the same at each node. Since

the algorithm is based on the static IMC, it seems fair to assume the correctness of

this statement. The high-level description algorithm for Node Failure that handles

this process is found in Figure 5.4.

F. NODE RECOVERY PROCESSING

Recovery procedures are initiated by the first periodic status message received by

the recovering node after a node restart. Upon receipt of a periodic message, the recov-

ering node generates an aperiodic status message containing a load percentage of zero.

Additionally the recovering node also sets a boolean variable RCVRYNPROGRESS

34

/' Procedure Node Failure migrates all */
/* functions from the failed node */

procedure Node Failure (NodeId of failed node) is
begin

ACTIVEFN(i) := active functions of failed node;
for i = 1 to end of ACTIVEFN loop

determine node with largest IMC;
if own node determined then

build FNON msg;
Send FNON msg to OS;

end if;
end loop;

end Node Failure;

Figure 5.4: Node Failure High-Level Description Algorithm

and initializes all elements of its TIMER array to the current time. All active nodes,

upon receipt of the aperiodic message, generate an aperiodic message containing the

unique and common section of its NST.

Each node also sets its flag, LOCVAR.UNIQSENT, which prevents the node

from repeatedly sending aperiodic messages when it receives the aperiodic messages

sent by other active nodes. Upon receipt of the aperiodic message, the Status Monitor

of the recovering node stores the body of the messages in its own NST and set a flag

in its RCVRY to indicate receipt of a given node's unique and common sections.

After all nodes have responded to the recovering node with an aperiodic message, the

recovering node generates a periodic status message with a load of zero. Receipt of

a periodic status message with a load percentage of zero indicates to all nodes that

the recovering node has, in fact, fully recovered and is ready to commence normal

processing. Therefore, all nodes reflect the recovered node as up in NST and clear

their UNIQSENT flag. The recovered node notifies its Node Recovery algorithm for

35

/* Node Recovery takes the function on
/* the most overloaded node with the */

/* most slack-time */

procedure Node Recovery is
begin

OLNODE := node with largest load;
FN(i) := active functions of OLNODE;
for i = 1 to end of FN(i) loop

MOVEYN := FN(i) with largest time to deadline;
end loop;
build FNON msg;

Send FNON msg to OS;
end Node Recovery;

Figure 5.5: Node Recovery High-Level Description Algorithm

determination of the function to be activated. The high-level description algorithm

for Node Recovery is shown in Figure 5.5.

36

VI. SIMULATION RESULTS AND PROGRAM
SPECIFICATIONS

A. GENERAL

In order to verify the framework described so far, a system of four nodes and

12 functions has been simulated. Ada is used to implement this system as a group of

independent packages. Components of the LIFFCL and the RL make up each node

by utilizing the instantiation of these packages. The system also contains a NCL,

an Event Generator (EG) package, and the Front End Procresor (FEP' procedure.

Each of these packages, consist of one or more independent task bodies which contain

"accept" statements for establishing rendezvous' between tasks. The periodic tasks

are activated initially with a rendezvous call to establish each task's identity. After

this initial rendezvous, the periodicity is established by the expiration of a delay

statement. Throughout the duration of the delay, a task is suspended by the operating

system, releasing the processor for utilization by other tasks.

B. SUPPORTING TASKS

The supporting tasks are those which are not instantiated for each node. Ad-

ditionally, these tasks do not aid in the processing of the different messages that are

broadcast.

NCL is used to simulate a broadcast network. Messages are both transmitted

and received by each node's LIFFCL. Details of the sending and receipt of messages

via the NCL are covered in depth in another thesis [Ref. 2].

The Event Generator either creates fnoff messages or simulates node failure.
Additionally, these events occur periodically and are randomly chosen. The two events

37

created are utilized to verify the correctness of the high-level description algorithms

that handle node over!oad or the recovery procedures that must take place for node

failure and recovery. A fnoff message is sent to ensure that the node who iz to receive

a function does, in fact, respond by building and sending a fnon message. The fnoff

message is normally built within the algorithm for Node Overload.

Because only one processor is used in simulating the four nodes which run

concurrently, one node could not be physically turned off. Therefore, in simulating

node failure, the Event Generator marks a node as down. The node marked down

will not send its next periodic message. The other nodes' LIFFCL detects a failure

when this message is not received on time. The details of generation of periodic

messages and detection of failure is covered in another thesis [Ref. 2]. The FEP is

a single procedure executed only once to initialize nodes, open files, and execute a

single rendezvous call with each task in order to assign the task's node identity.

C. RECONFIGURATION COMPONENTS

The algorithms and tasks that are used for processing the different types of

messages related to reconfiguration are defined as the application components. They

are instantiated for each of the nodes. The basic functions of each are covered in the

following paragraphs.

RL consists of two procedures, Fn-0ff_-Rec and FnOnRec. The Input Server,

a component of LIFFCL, rendezvous' with RL when processing is required for fnoff

and fnon messages. For a fnoff message, a node checks to see whether or not it must

respond with a fnon message. If it does, it builds and sends the fnon message to

the LIFFCL. Unless the node is designated to receive a function, no further action

is required. Upon receipt of the fnon message, all nodes must update the function

location. In addition, the activating and deactivating nodes must make changes to

38

the active functions in the AL. However, this is not within the scope of the thesis and

is recommended for future work.

Although the code for the actual reassignment of functions due to node overload,

failure, and recovery is not complete, the events which precede and follow this action

are included. As mentioned above, the Event Generator simulates a node overload.

The proper action taken by all the nodes, upon receipt of the fnoff and fnon messages,

must occur, and this is tested in the simulation program. Likewise, the necessary

action taken upon receipt of periodic and aperiodic messages is checked for the case

of node failure/recovery.

D. RECONFIGURATION RESULTS

To verify the correctness of the state diagrams and high-level description algo-

rithms discussed in the previous chapters, timing diagrams are provided. They reflect

the sequence of events that occurred in the output following the receipt of messages

that were built and sent by either the Event Generator or the specific tasks for which

coding is complete.

For the Node Overload, a fnoff message is sent out when a node is overloaded.

In this case, the Event Generator simulates the overload by sending the fnoff message.

The message indicates which function is to migrate and which node is to receive

it. The node designated to receive it, in turn, responds with a fnon message. The

diagram indicating the response when receiving both fnoff and fnon messages is shown

in Figure 6.1. This figure shows that Node 2 is the receiving node, and that it does

respond .r Iknowledge wth a fn n message. The verbiage beside the arrowheads

explains the action needed to be taken at that particular node. The arrows indicate

broadcasts, and the numbers beside them indicate simulation time at the time of

initiating and completing each broadcast.

39

NI N2 N3 N4

FNOFF sent from 548
Ni1; N2 is to respond

Time rcvd from Ni1 600.05 60.7 0.6600.26

FNON sent from N2

Time rcvd from N2
60.9605.74 605.73 605.74

(update Fn_Loc (update FnjLoc (update FnjLoc) (update Fnj..oc)
& terminate fn) & activate fn)I

Figure 6.1: Reconfiguration Events upon Node Overload

40

A failed node is detected when a periodic status message is not received at other

nodes within a certain time limit. For simulation purposes, the failed node starts a

recovery process when it receives the next periodic status message. When all active

nodes have sent their NST, recovery is complete. The recovered node responds with a

periodic message containing zero load to let other nodes know it is back up. The Node

Recovery algorithm is then started at the recovering node to migrate a function. The

diagram of these events leading up to the actual assignment of a function is shown in

Figure 6.2. This figure shows that Node 1 failed and then began recovery procedures.

Each time Node 1 received an aperiodic status message from the other active nodes,

it updated its NST i.e., it is rebuilding the NST. The other nodes update the load of

the node which sent the message and the time that the message was sent. After Node

I received all the aperiodic messages, it built and sent the periodic message which

indicates to all nodes that Node 1 is back up.

E. LIMITATIONS AND FUTURE WORK

The current program is not complete at this time. The additional work required

to complete the specified operation of the system is described below. The high-level

description algorithms need to be converted to actual code and implemented into

the existing code. The static allocation algorithm must also initialize the FN_LOC

and FNJNFO arrays while the assignment of functions take place. Currently, when

the RL establishes a rendezvous with the Input Server, the latter is tied up until

the former is done with its processing. A circular queue implemented within RL

prevents this from happening. In addition, the RL then needs to be set up with a

delay statement in order for it to have a chance to check if messages need processing.

The major work that needs attention is the development of AL to conform to the

interface requirements specified in the thesis. AL has to determine the load of a

41

Node FaiureonNI NI N2 N3 N4
simulated at time

450.801
Time NF detected 503.76 503.769 503.77

N I Recovers at 551.0 poesN)(tcs F poesN

Aperiodic sent from .63
NI

Time rcvd from NI1 559.25 559.37 55.6559.37
(send Aperiodic & (send Aperiodic & (send Aperiodic &
update time & load iupdate time & load update time & load)

Aperiodic sent from 503
N3

Time rcvd from N3
561.9 56211 52.10562-109

(update NST & ti) (update time & I J) (update time) (update time & load)

Aperiodic sent from 503

N4

Time rcvd from N4
564.69 564.89 56.3564.84
(update NST & time, (update time & Iml) (update time & I)(update time)

Aperiodic sent frmm 1
N2

Time rcvd from N2 567.41 567.57 567 56 567.57
(update NST & time) (update time) (update time & loc (update time & load)

Periodic sent from 579

NI

ime rcvd from N I w570.13 57.30 570. - , 570.299
(update NI status (update NI status) (update NI status) (update N I status)
& process NR)

Figure 6.2: Reconfiguration Events upon Node Failure and Recovery

42

node and notify the Node Overload algorithm within RL. The algorithm for Node

Overload can be modified slightly for AL to utilize when determining the load of its

node. Additionally, when AL finishes processing messages for its active functions,

it must update the NST's unique section pertaining to the function statistics. AL

also needs to be able to modify its active function queues in addition to activating or

deactivating the functions. The LIFFCL is required to maintain the queues for the

non-active functions, and this needs to be implemented as well.

F. SUMMARY

The actual code implemented in the simulation model and its output are con-

tained in Appendices A and B respectively. The sections which are not completed

can be easily implemented into the current code. Comments have been inserted in

the areas where a non-implemented algorithm or procedure needs to be placed for

the current program to run. The next step, aside from the limitations listed in the

previous section, is to get the code running on four separate processors. Additionally,

a possible comparison can be done with a system in which all data messages need

to be retransmitted upon migration versus the method currently used in which data

messages are stored in queues.

43

VII. CONCLUSION

A. GENERAL

The main objective in distributed processing is to increase system throughput.

Therefore, it is imperative that allocation algorithms are not only efficient and correct,

but fast as well. Static allocation is simple and fast, yet the fact that it is based

on a priori information renders it inflexible [Ref. 121. Dynamic allocation used in

reconfiguration, based on preemptive, priority-based scheduling, compensates for this

inflexibility by considering task deadlines and environmental elements.

B. STATIC ALLOCATION

The proposed algorithm, LNF, requires fewer computations than HNF, allowing

faster, simpler initial allocation. The complexity of HNF is O(n log n), n being the

number of nodes, whereas LNF is linear [Ref. 6]. Although the initial weights of

each node are somewhat equally balanced, LNF also does not guarantee that all

nodes successfully process all assigned functions prior to their deadline times. This

is partially attributed to the mix of periodic and aperiodic functions and/or the

imprecise nature of a priori function information which is at best only an estimate

of the characteristics [Ref. 5]. The dynamic reconfiguration compensates for this

condition and allow for the functions to be migrated.

C. DYNAMIC ALLOCATION

The reconfiguration algorithms utilize a combination of load and IMC, when

possible, to maximize system throughput while minimizing the IMC. In the case of

node failure, only the IMC is utilized. Both load and IMC could have been used, but

44

to speed up the recovery of the active functions on the failed node, only the IMC is

utilized. The dynamic reconfiguration algorithms are able to use the most current

statistics of the global state. Since the information is current, based on the actual

processing of each node, the dynamic assignment of functions can be made with

more accuracy than static allocation. Additionally, the dynamic allocation allows

for reassignment so that system degradation can be minimized. For instance, an

overloaded node degrades processing of other nodes, particularly if the other nodes

contain active functions which are dependent on functions active on the overloaded

node.

D. PROCESSING OF ALGORITHMS

In determining which node(s) actually process the static and dynamic algo-

rithms, a iiode's status and communication overhead required are considered. For

static allocation, all nodes process the algorithm to prevent dependency on one node

to do the allocation. It not only decreases communications required, but it allows

for any node to be down at start-up. If one node did the processing, there are a

,' "mum of k messages required to be transmitted versus no messages required if all

nodes proces the static allocation algorithm.

For a node overload condition, only the overloaded node processes the Node

Overload algorithm. This prevents interruption of normal processing occurring at

the other nodes. Processing of the algorithm at other nodes could possibly cause

overload at these nodes as well.

For the case of node failure, all nodes process the Node Failure algorithm.

Each node is able to detect the failure and can respond quickly. Also, the only

communications required are the fnon messages; one for each active function on the

failed node. If one node was designated to process the algorithm, the same problem

45

exists as with static allocation which is having to know which node is up to do the

processing. Additionally, acknowledgement would be required i.e., a fnon message

acknowledging that a node will activate the function designated needs to be sent;

therefore, at least twice as many messages would be transmitted.

For recovery, only the recovering node processes the Node Recovery algorithm

because its NST reflects the most current statistics of the system.

E. SUMMARY

Allocation algorithms represent a compromise between conflicting factors, and

therefore, have different advantages and disadvantages. In some cases, algorithms

that prove to be better than others tend to be very complex and difficult to im-

plement. Additionally, performance of the algorithms can be very dependent upon

the system and node configurations. The algorithms described in the thesis mini-

mize the overhead caused by both IIC and the complexity of the algorithm. More

importantly, they are designed to work well within the proposed framework of the

system.

46

APPENDIX A: SIMULATION CODE
/* This program code is part of a joint project. Members of */
/* the project team are as follows: S. Shukla, C. Yang, */
/* R. Puett, and K. Lehman */
/* The code is given in its entirety for completeness of */
/* of the topics covered in this thesis */
/* The code is in no particular order except for the first few */
/* sections which are the base for the remaining sections. */
/* Each section has comments preceding it and before each sub- */
/* section or task/procedure within the section to define what */
/* is occurring within that section. */
/* The first section contains the DECLARATIONS which are
/* used throughout the program. For each of the remaining */
/* sections, a specification package precedes the package body. *1
/* The package PROCESS is the second section because it needs */
/* to be compiled before the packages following it. It is the */
/* package that contains the algorithms. The next section is */
/* TRAND. It is the random number generator and needs to be */
/* compiled prior to compiling COMMNET which follows TRAND. */
/* COMMNET creates the instantiations to form the nodes. The */
/* ordering of what follows from this point on does not matter. */
/* The remaining sections are listed in the following order: */
/* INS - contains the NODEINITIALIZER and INPUT-SERVER tasks */
/* OUTS - contains the OUTPUT-SERVER task */
/* CKPT - contains the CHECKPT and EVENT_CNT tasks */
/* RL - contains the RECONFLAYER task */
/* SM - contains the STATUSREC and STATUSBDCST tasks */
/* FP - contains the EVENT-MAKER i.e., Event Generator */
/* FEP- Front-End Processor which opens output files for each */
/* node and initiates the NST for each node. */

with textio; use textio;
with calendar; use calendar;
package DECLARATIONS is

F1,F2,F3,F4 : FILE-TYPE;
type MSG.TYPE is (data,control);
type ACTION-TYPE is (MKR,FNON,FNOFF,STATUS,CHKPT);
type IMCM is array(1..12,1..12)of integer; --IPC comms array
type FI is array(1..4)of integer; --function information params.
type FL is array(1..12)of integer; --function location array
type NSL is array(1..2,1..4)of integer;--Node status and load
type RCY is array(l..4)of integer; --array used when recovering
type STATTIME is array(l..4)of float; --array used in each node to
type FAILFLG is array(1..12)of boolean; --array used in each node to

-- record the times when status

47

-- msgs were sent by other nodes
type FUNCTIONREC is -- contents of the unique section

record
TTC : float;
TTD : float;
FNINFO : FI;
LASTMSGPROC : float;
LASTMSGREC : float;
REGISTER-VAL : integer 0;
SYMBOL-VAR : integer : 0;

end record;
type FUNCTIONSTATS is array(l..12) of FUNCTIONREC;
type UNIQUE is array(1..4) of FUNCTIONSTATS;
type COMMON is

record
NODESTATLD : NSL; -- node status and load
FNLOC : FL;
IMC : IMCM;

end record;
type BODY-TYPE is

record
DATA string(1..80);
UNIQ FUNCTIONSTATS;
COMM COMMON;

end record;
type MSG-RECORD IS --msg to be passed on the net

record
TOT : float; --Time of Transmit of a msg
TOR : float; --Time of Receipt of a msg
MSG-KIND : MSG-TYPE; --type of msg
DESTFUNC : integer 0; --which fn a msg is sent to
DEST-NODE : integer 0; --node who acts on a msg
ORIGFNNODE : integer 0; --originator (fn or Node) of msg
CNTRLACTION : ACTION-TYPE
MSG-BODY : BODYTYPE; --msg that needs to be read

end record;
Q_SIZE : constant integer := 15; --size of message queues
type QUEUE is array (1..QSIZE) of MSGRECORD;
type MSG-QUEUE is --queue to hold msgs to send out

record
MSGTOSEND boolean : false;--indicates if queue has a msg
BLOCK-WRITE boolean : false;--used to block writing to queue
RDCNT integer := 1; --the read pointer in queue
MSGCNT integer := 1; --the write pointer in queue
MSGQUE QUEUE; --holds up to 15 msgs

end record;
type NODESTATUSTABLE is --defines contents of the NST

record
COMMON-SECTION : COMMON;
UNIQUESECTION : UNIQUE;
NODEID : integer := 0;

48

end record;
type VARIABLES is --status conditions for a node

--(local to each node)
record

RCVRY_INPROG: boolean false;--indicates node recovery
RCVRY RCY; --array used in rcvry process
UNIQSENT boolean : false;--indicates if a unique section

-- was sent by a node
CHKPTTAKEN : RCY; --array used to indicate if a

-- checkpoint is complete or not

CHKPTORIG : boolean : false;-- node originating chkpt
CHKPTCOMPLETE : boolean false;--a completed checkpoint done
LOCALCHKPT : boolean := false;--indicates if a node has taken

-- a checkpoint
CHKPTTIMER float;
FIRSTMKR boolean false;--flag to note 1st marker msg to

-- come across net - indicates a

-- checkpoint needs to occur
EVNTCNT integer 0; --cnts up to 25 then resets to 1

--(indicates when a chkpt needs
-- to be taken)

EVNTCNTOUT : integer := 0; -- events sent by output server
ACTIVEFN_QUE : QUEUE; -- msgs for assigned functions
DATA_MSGQUE : QUEUE; -- holds msg for all functions
OUTQ : MSG-QUEUE; --queue to hold output msgs
INQ : MSG-QUEUE; --queue to hold input msgs
TIMER : STAT_TIME; --array to hold times L, when

-- status msgs were sent
end record;

NST,NSTBAK : array(1..4)of NODESTATUSTABLE;
LOCVAR array(l..4)of VARIABLES;--gives each node a set of Loc Vars
ST array(i..4)of NODESTATUSTABLE;--temporary copy of NST
NET_BUSY: boolean; --indicates if network is tied up
NET_Q : MSGQUEUE; --queue to hold msgs for network
FAILED.NODE : FAILFLG; --used to indicated failed node
end DECLARATIONS;

with DECLARATIONS; use DECLARATIONS;
with TEXT.IO; use TEXTIO;
package PROCESS is

--this procedure gets and prints the current value of real time
procedure GETREALTIME(NID: in integer; LT: in out float);

--this procedure processes a marker msg
procedure MKRMSG (M:in out MSGRECORD;NID:in integer;FLG:in out

boolean);

--this procedure processes a function on msg
procedure FNONMSG (M : in MSGRECORD; NID : in integer);

49

--this procedure processes a function off msg
procedure FNOFFMSG(M:in out MSGRECORD;NID:in inteer;MSGFLAG:

in out boolean);

--this procedure processes a status msg
procedure STATMSG (M:in out MSGRECORD;NID:in integer;FLG:in out

boolean);

--this procedure processes a checkpoint complete msg;
procedure CHK_PT_CMPLT_MSG (M : in MSG-RECORD; NID : in integer);

end PROCESS;

with textio;
package FLOATINOUT is new TEXTIO.FLOATIO(FLOAT);
with FLOAT_INOUT; use FLOAT_INOUT;
with text.io; use text-io;
with numberio; use numberio;
with integer_io; use integerio;
with calendar; use calendar;
with DECLARATIONS; use DECLARATIONS;

-- The package PROCESS contains all the procedures necessary
-- to process the different types of messages that come into
-- the Input Server. Each procedure is preceeded by a
-- description of its actions.

package body PROCESS is

-- Procedure Get Real Time utilizes the system package
-- calendar to access the Real time clock of the system
-- processor. In this case, only the seconds portion of
-- the calendar is utilized.

procedure GETREALTIME(NID: in integer;LT: in out float) is
S DAY-DURATION;
R TIME;
T float;
begin

R := clock;
S : SECONDS(R);
T :* float(S);
LT :T;
case NID is

when 1 ->
PUT(F1,T,6,5,0);
SET_COL(F1,15);
PUT(F1," Node #1");

when 2 =>

50

PUT(F2,T,6,5,0);
SETCOL(F2, 15);
PUT(F2," Node #2");

when 3 ->
PUT(F3,T,6,5,0);
SET-COL(F3,15);
PUT(F3," Node #3");

when 4 ->
PUT(F4,T,6,5,0);
SET-COL(F4, 15);
PUT(F4," Node #4");

when others =>
NULL;

end case;
end GET-REAL-IME;

-Procedure Function On Message is called from the
-Reconfiguration task. It processes a FNON message
-and updates a Node's NST to reflect the indicated
-function's location.

procedure FN-..N-YSG(M :in MSG.RECORD; NID :in integer) is
Z,Y,X integer;
GM MSG.RECORD;
PT float :=0.0;
DEACT-NODE integer;

begin
GM M;
Z UNST(NID).NODE-ID;

Y :M.DEST-FUNC;
DEACT-.NODE :- NST(Z) .COMMON-SECTION.FN-.LOC(Y);
NST(Z) .CO1'gM1N-.SECTION.FN-.LOC(Y) :=M.ORIG-.FN-.NODE;
case Z is -- write info to specific output file

when 1 =>
GEL.REAL-.TIME(Z ,PT);
SET-COL(Fl,25);
PUT(Fl,"R-.L rcvd FN_.ON from Node V");
PUT(Fl,M.ORIG-FN-.NODE,1);
SET-COL(F1 .60);
PUT(Fl,"EVNT V");
PUT(FI ,M.MSG-.BODY.UNIQ(1) .SYMBOLVAR,4);
SET-COL(F1 ,72);
if M.ORIGN_.NODE - Z then -- activating node -turns fn on
PUT-LINE(Fl,"I am the activating node and changing NST.");

else
if DEACT..NODE - Z then--deactivating node
PUT-LINE(F1,"I am the deactivating node and changing NST");

else
PUT-LINE(Fl,"Neither act/deact node and changing NST.");

end if;
end if;

51

SET-COL(F1,72); -- shows changes in NST from FNON
for R in 1. .12 loop

PUT (Fl ,NST(Z) .COMMON_.SECTION.FN-.LOC(R) ,3);
end loop;
NEW-.LINE(FI);

vhen 2 ->
GET...REALTIME(Z,PT);
SET-COL(F2,25);
PUT(F2,'R-.L rcvd FN_.ON from Node 08");
PUT(F2,M.RIG_FN_.NODE, 1);
SETCOL(F2,60);
PUT(F2,"EVNT V");
PUT(F2,M.MSG-.BDDY.UNIQ(1) .SYMBOL_.VAR,4);
SET-.COL(F2,72);
if M.ORIG-.FN-NODE = Z then -- activating node, turns fn on
PUT-LINE(F2,"I am the activating node and changing NST."1);

else
if DEACT-NODE = Z then--deactivating node
PUT-.LINE(F2,"I am the deactivating node and changing NST");

else
PUT-LINE(F2,"Neither act/deact node and changing NST.");

end if;
end if;
SET-COL(F2,72); -- shows changes in NST from FNON
for R in 1. .12 loop

PUT(F2,NST(Z) .CO1MDN SECTION.FN-LOC(R) ,3);
end loop;
NEW-.LINE(F2);

when 3 =>
GET-.REAL-JIME(Z ,PT);
SET-COL(F3,25);
PUT(F3,"R-.L rcvd FN_.ON from Node S");
PUT(F3.M.ORIG.FN_.NODE, 1);
SET-COL(F3,60);
PUT(F3,"EVNT S");
PUT(F3 ,M.MSG-.BODY .UNIQ(1) .SYMBOLVAR,4);
SET-.COL(F3,72);
if M.ORIG-.FN..NODE - Z then -- activating node - turns fn on

PUT-.LINE(F3,"I am the activating node and changing NST.");
else
if DEACT-.NODE - Z then--deactivating node
PUT-.LINE(F3,"I am the deactivating node and changing NST");

else
PUT-.LINE(F3,"Neither act/deact node and changing NST."I);

end if;
end if;
SET-COL(F3,72); -- shows changes in NST from FNON
for R in 1. .12 loop

PUT(F3,NST(Z) .COMMON-.SECTION.FN-.LOC(R) ,3);
end loop;
NEW..LINE(F3);

52

when 4 =>
GETREALTIME(Z,PT);
SET_COL(F4,25);
PUT(F4,"RL rcvd FNON from Node 8");
PUT(F4,M.ORIGFNNODE,1);
SETCOL(F4,60);
PUT(F4,"EVNT S");
PUT(F4 ,M.MSGBODY. UNIQ (1). SYMBOLVAR,4);
SETCOL(F4,72);
if M.ORIGFNNODE = Z then --activating node - turns fn on
PUTLINE(F4,"I am the activating node and changing NST.");

else
if DEACTNODE = Z then--deactivating node
PUTLINE(F4,"I am the deactivating node and changing NST");

else
PUTLINE(F4,"Neither act/deact node and changing NST.");

end if;
end if;
SET_COL(F4,72); -- shows changes in NST from FNON
for R in 1..12 loop

PUT(F4,NST(Z).COMMONSECTION.FNLOC(R),3);
end loop;
NEWLINE(F4);

when others =>
NULL;

end case;
end FNONMSG;

-- Procedure Function Off Message is called by the Reconfiguration
-- task. It processes a FNOFF message and determines if the node is
-- to activate a function. It also generates a FNON message if
-- necessary.

procedure FNOFFMSG(M:in out MSGRECORD;NID: in integer;MSG-FLAG:
in out boolean) is

Z,Y : integer;
3 MSGRECORD;
PT float :- 0.0;

begin
Z : NST(NID).NODEID;
Y :- M.DEST_NODE;
GETREALTIME(Z,PT);
case Z is

when 1 ->
SETCOL(FI,25);
PUT(FI,"RL rcvd FNOFF from Node 8");
PUT(Fl,M.ORIGFNNODE,1);
SET_COL(F1,60);
PUT(FI,"EVNT 8");
PUT(Fl,M.MSGBODY.UNIQ(1).SYMBOL_VAR,4);
SETCOL(Fl,72);

53

if Z =Y then
PUT(Fl,"FN..ON sent to activate FN S");
PUT(F1IM.DEST-FUNC,2) ;NEW-.LINE(F1);

else
PUT-.LINE(F1,"No further action required ATT.");

end if;
when 2 =>

SET-COL(F2,25);
PUT(F2,"&.L rcvd FN-.OFF from Node S");
PUT(F2,M.ORIG.FN-.NODE, 1);
SET-COL(F2,60);
PUT(F2,'EVNT 8");
PUT(F2,M.MSG-.BODY.UNIQ(1) .SYMBOL-VAR,4);
SET-COL(F2,72);
if Z aY then

PUT(F2,"FN-.ON sent to activate FN #"1);
PUT (F2,M DESL-FUNC ,2); NEWLINE (F2);

else
PUT-LINE(F2,"No further action required ATT.");

end if;
when 3 ->

SET-COL(F3,25);
PUT(F3,"R-.L rcvd FN-.OFF from Node V")
PUT(F3,M.ORIG.FN_.NODE, 1);
SET-COL(F3,60);
PUT(F3,EIEVNT 0");
PUT(F3,M.MSG_.BODY.UNIQ(1) .SYMBOL_.VAR,4);
SET-COL(F3,72);
if Z - Y then

PUT(F3,"FN.ON sent to activate FN #)

PUT(F3,M.DEST-FNC,2) ;NEW_.LINE(F3);
else

PUT-LINE(F3,"No further action required ATT.");
end if;

when 4 =>
SET-COL(F4,25);
PUT(F4,"R-L rcvd FN-.OFF from Node #");
PUT(F4,M.ORIG.FN-.NODE, 1);
SET-COL(F4,60);
PUT(F4,"EVNT #"1);
PUT(F4,M.MSG-.BODY.UNIQ(1) .SYMBOL-VAR,4);
SET-COL(F4,72);
if Z - Y then

PUT(F4,"FN..ON sent to activate FN V");
PUT (F4 , .DEST-FUNC. 2); NEW..LINE (F4);

else
PUT-.LINE(F4,"No further action required ATT.");

end if;
when others>

NULL;
end case;

54

if Z = Y then -- activating node
-- create FNON msg to send
J.MSGKIND := CONTROL;
J.DESTFUNC :z M.DEST_FUNC;
J.ORIGFNNODE : Z;
J.CNTRLACTION : FNON;
-- set flag to indicate msg needs to go to OUTPUT-SERVER
MSGFLAG := true;
M :- J;

end if;
end FNOFF_MSG;

-- Procedure Status Message processes both periodic and aperiodic
-- status messages. It is called by Status Monitor (SM). The
-- recovery process is handled by this procedure. Recovery is
-- accomplished by rebuilding the NST of the recovering node
-- from the contents of aperiodic messages (i.e. the Unique
-- Section)

procedure STATMSG(M : in out MSG-RECORD; NID : in integer; FLG
in out boolean) is

XZ,Y : integer;
GM : MSGRECORD;
RCVRYCOMPLETE : boolean := false;
MYUNIQSENT boolean := false;
PT : float : 0.0;

begin --Dest.Node field is used to designate a periodic msg (1)
-- or an aperiodic msg (2). The Dest.Fn field holds the value
-- of the load of a node designated by the ORIGFNNODE.

Z : NST(NID).NODEID;
Y : M.DESTFUNC;
X : M.ORIGFNNODE;
LOCVAR(Z).TIMER(X) := M.TOR; --update periodic time of node
NST(Z).COMMONSECTION.NODESTATLD(2,X) := M.DESTFUNC;

-- node load percentage.
GETREALTIME(O,PT);
if LOC_VAR(Z).RCVRY_IN_PROG and

PT - LOCVAR(Z).TIMER(Z) > 61.5 then
LOCVAR(Z).RCVRYINPROG := false;
NST(Z).COMMONSECTION.NODESTATLD(1,Z) : 0;
NST(Z).COMMONSECTION.NODESTATLD(2,Z) : 0;
for J in 1..4 loop -- clear rcvry array

LOCVAR(Z).RCVRY(J) :- 0;
end loop;
case Z is

when 1 i>

GETREALTIME(1,PT);
SETCOL(F1,72);
PUTLINE(Fl,"RCVRY attempts unsuccessful. Restart RCVRY");

when 2 ->
GETREALTIME(2,PT);

55

SETCOL(F2,72);
PUTLINE(F2,"RCVRY attempts unsuccessful. Restart RCVRY");

when 3 =>
GETREALTIME(3,PT);
SETCOL(F3,72);
PUTLINE(F3,"RCVRY attempts unsuccessful. Restart RCVRY");

when 4 =>
GETREALTIME(4,PT);
SETCOL(F4,72);
PUTLINE(F4,"RCVRY attempts unsuccessful. Restart RCVRY");

when others =>
NULL;

end case;
end if;
if M.DESTNODE I then --periodic msg

if NST(Z).COMMONSECTION.NODESTATLD(1,X) = 0 and
M.DESTFUNC = 0 then

LOCVAR(Z).UNIQSENT := false;
NST(Z).COMMONSECTION.NODESTATLD(1,X) := 1;
FAILEDNODE(X) := false;

end if;
if not LOCVAR(Z).RCVRYINPROG and

NST(Z).COMMONSECTION.NODESTATLD(1,Z) = 0 then
PUTLINE("BUILDING an APERIODIC message.");
GM.DEST_NODE 2; -- build aperiodic status message
GM.DESTFUNC 0;
GM.ORIGFNNODE Z;
GM.CNTRLACTION : STATUS;
GM.MSGKIND := control;
FLG := true;
LOCVAR(Z).RCVRYINPROG := true;
for I in 1..4 loop -- reset timers of nodes other than the

if I /= X then -- node whose periodic msg was received
LOCVAR(Z).TIMER(I) := PT;

end if;
end loop;

end if;
else -- aperiodic msg

if NST(Z).COMMONSECTION.NODESTATLD(1,Z) = 0 then
--recovery node

LOCVAR(Z).RCVRY(X) :- 1;
if Z /- X then

NST(Z) .UNIQUE.SECTION(X) :- M.MSGBODY.UNIQ;
NST(Z) .COMMON.SECTION :- M.MSGBODY.COMM;

end if;
RCVRYCOMPLETE :- true;

for I in 1..4 loop -- check if all nodes sent the
-- unique sections

if NST(Z).COMMONSECTION.NDESTATLD(1,I) - 1 then
-- active node

56

if LOC-.VAR(Z).RCVRY(I) = 0 then
RCVRY-.COMPLETE false;

end if;
end if;

end loop;
if RCVRY-COMPLETE then -- call the node recovery

-procedure

GM.DESTNQDE 1; -- build periodic status message
GM.DEST_.FUNC 0; -- indicates rcvry complete to

-other nodes
GM.ORIG-.FN-.NODE Z
GM.CNTRL-.ACTION USTATUS;

GM.MSG-.KIND :=control;
FLG := true;
LOC..VAR(Z).RCVRY-INPROG :=false;
for J in 1. .4 loop -- clear rcvry array

LOC-.VAR(Z).RCVRY(J) 0;
end loop;

end if;
else -- not the orig node of APERIODIC

-chk if unique section vas sent

if not LOC-.VAR(Z).UNIQ_.SENT then
GM.DEST-NODE 2; -- build an aperiodic status message
GM.DEST..YUNC NST(Z) .COMMON-.SECTION.NODE-.STA-LD(2 ,NID);
GM.ORIG-.FN-.NODE Z
GM.MSG-BODY.UNIQ NST(Z) .UNIQUE-.SECTIONJ(Z);
GM.MSG-.BODY.COMM NST(Z) .COMMON-.SECTION;
GM.CNTRL-ACTION STATUS;
GM.MSG..KIND control;
FLG :=true;
MY-.UNIQ..SENT true;
LOC-.VAR(Z).UNIQ-SENT := true;

end if; -- UNIQ-.SENT
end if;

end if;
GET-.REAL..IME(Z,PT);
case Z is

when 1 ->
SET-.COL (Fl ,25);
if M.DEST-.NODE = 1 then

PUT(Fl,"S..y rcvd PERIODIC from Node 0");
else

PUT(Fl,"S-.M rcvd APERIODIC from Node #");
end if;
PUT(F1 ,J' ORIG-.FN-.NODE, 1);
SET-COL(F1,60);
PUT(Fl,"EVNT #") ;
PUT(F1,M.MSG-.BODY.UNIQ(1).SYMBOL_.VAR,4);
SETCOL(F1 ,72);
if M.DEST-NODE - 1 then

57

PUT(F1,"Reset Timer element of Node S");
PUT(Fl,M.ORIG-FN_.NODE,1);
NE W_.LINE (F1);

else
if NST(Z).COMMON-SECTION.NODE-.STAT..LD(1,Z) =0 then

if RCVRY-COMPLETE then
PUT-LINE(F1,"Recovery complete,send PERIODIC msg");

else
PUT-LINE(Fl,"This is the recovering node.");

end if;
else

if LOC-VAR(Z) .UNIQ-.SENT and KY_.UNIQ_.SENT then
PUT-LINE(F1,"Sending APERIODIC with uniq sect.");

else
PUT-LINE(F1A'APERIODIC response sent, no action.");
end if;

end if;
end if;

when 2 =>
SET-COL(F2,25);
if M.DEST-.NODE = 1 then

PUT(F2,"S.M rcvd PERIODIC from Node V");
else

PUT(F2,"S..M rcvd APERIODIC from Node V");
end if;
PUT(F2 ,M .ORIG-.FN-.NODE, 1);
SET_.COL(F2,60);
PUT(F2,"EVNT V");
PUT(F2,M.MSG-.BODY.UNIQ(i) .SYMBOLVAR,4);
SETCOL(F2,72);
if M.DEST-.NODE = 1 then

PUT(F2,"Reset Timer element of Node V");
PUT(F2 ,M. ORIG-FN-NODE, 1);
NEW_.LINE(F2);

else
if NST(Z) .COMMON.SECTION.NODE-.STA-LD(1 ,Z) =0 then

if RCVRY-.COMPLETE then
PUT-LINE(F2,"Recovery complete,send PERIODIC msg");

else
PUT-LINE(F2,"This is the recovering node.");

end if;
else

if LOC-VAR(Z) .UNIQ-.SENT and MY-.UNIQ..SENT then
PUT-LINE(F2,"Sending APERIODIC with uniq sect.");

else
PUT-LINE(F2,"APERIODIC response sent, no action.");

end if;
end if;

end if;
when 3 ->

SET-COL(F3,25);

58

if M.DEST-NODE = 1 then
PUT(F3,"S-.M rcvd PERIODIC from Node S");

else
PUT(F3,"S-.M rcvd APERIODIC from Node V");

end if;
PUT (F3 ,M .ORIG..FN-.NODE, 1);
SET-COL(F3,60);
PUT(F3,"1EVNT V");
PUT(F3,M.MSG-.BODY.UNIQ(1) .SYMBOL-VAR,4);
SET-COL(F3,72);
if M.DEST-NODE = 1 then

PUT(F3,"Reset Timer element of Node V");
PUT(F3,M.ORIG-FNNODE,1);
NEW..LINE(F3);

else
if NST(Z).COMMON-SECTION.NODE-STAT_.LD(1.,Z)= 0 then

if RCVRY-.COMPLETE then
PUT-LINE(F3,"Recovery complete,send PERIODIC msg");

else
PUT-LINE(F3,"This is the recovering node.");

end if;
else

if LOC..VAR(Z) .UNIQ-SENT and MY_.UNIQ..SENT then
PUT-LINE(F3,"Sending APERIODIC with uniq sect.");

else
PUT-LINE(F3,APERIODIC response sent, no action.");

end if;
end if;

end if;
when 4 =>

SET-COL(F4,25);
if M.DEST-NODE =1 then

PUT(F4,"S-.M rcvd PERIODIC from Node V");
else

PUT(F4,"S-.M rcvd APERIODIC from Node V");
end if;
PUT(F4,M.ORIGFN-.NODE, 1);
SET-COL(F4,60);
PUT(F4,"EVNT 0");
PUT(F4,M.MSG-BODY.UNIQ(1) .SYMBOLVAR,4);
SET-COL(F4,72);
if M.DEST..NODE = 1 then

PUT(F4,"Reset Timer element of Node S");
PUT(F4 ,M. ORIG-.FN-.NODE, 1);
NEW.LINE(F4);

else
if NST(Z).COMMON-SECTION.NODE-.STALLD(1,Z) 0 then

if RCVRYSCOMPLETE then
PUT-LINE(F4,"Recovery complete,send PERIODIC msg");

else
PUT-LINE(F4,"This is the recovering node.");

59

end if;
else

if LOCVAR(Z).UNIQSENT and MYUNIQSENT then
PUTLINE(F4,"Sending APERIODIC with uniq sect.");

else
PUTLINE(F4,"APERIODIC response sent, no action.");

end if;
end if;

end if;
when others =>

NULL;
end case;

MY_.UNIQSENT := false;
if FLG then

M := GM;
end if;

end STAT_MSG;

-- Procedure Marker Message processes a MKR message utilized for
-- the checkpointing process. It is called from the CHECKPT
-- task. The node's NST is updated with the contents of the
-- message body. The procedure also generates a checkpoint
-- complete message at the node originating checkpoint to
-- indicate a successful checkpoint.

procedure MKRMSG(M : in out MSG-RECORD; NID in integer; FLG
in out boolean) is

X,Z,Y : integer;
GM MSGRECORD;
PT float := 0.0;

begin
Z NST(NID).NODEID;
Y := M.ORIGFNNODE;
if not LOCVAR(Z).FIRSTMKR then

LOCVAR(Z).FIRST_MKR := true;
if Y = Z then

LOC-VAR(Z).CHKPTORIG := true;
LOCVAR(Z).CHKPTTAKEN(Z) 1;
GETREALTIME(0,PT);
LOCVAR(NID).CHKPTTIMER := PT;

else
LOCVAR(Z).CHKPTORIG false;

end if;
end if;
if Y /= Z then -- not originating node of msg

NST(Z).UNIQUESECTION(Y) M.MSGBODY.UNIQ;
if LOCVAR(Z).CHKPTORIG = true then -- check point originator

LOCVAR(Z).CHKPTTAKEN(Y) 1;
LOCVAR(Z).CHKPTCOMPLETE : true;
for I in I..4 loop

if NST(Z).COMMONSECTION.NODESTATLD(1,I) = 1 then

60

-- node active
if LOC-VAR(Z).CHKPT-TAKEN(I) =0 theil

LOC-YAR(Z) .CHKPT-.COMPLETE false;
end if;

end if;
end loop;
if LOC-.VAR(Z) .CHKPTSCOMPLETE = true then

GM.MSG_.KIND :=CONTROL;
GM.CNTRL-.ACTION CHKPT;
GM.ORIG_.FNNODE Z
FLG :=true;

end if;
else -- not originating node
if not LOC-.VAR(Z).LOCALSCHKPT then -- didn't send unique sect

ST(Z) :=NST(Z;
GM.MSG_.KIND :=CONTROL;
GM.CNTRL-.ACTION MKR;
GM.ORIG_FN_.NODE Z;
GM.MSG-BODY.UNIQ NST(Z) .UNIQUESECTION(Z);
FLG :=true;
LOC.VAR(Z).LOCAL.CHKPT :=true; --true if checkpointec-
end if;

end if;
end if;
GET-REAL-.TIME (Z,PT);
case Z is

when 1 =>
SETCOL(Fl,25);
PUT(F,"C-.P rcvd MKR from Node V");
PUT(Fl,YM.ORIG-FNNODE,1);
SET-COL(F) ,60);
PUT(F , "EVNT V");
PUT(Fl,M.MSG-.BODY.UNIQ(1) .SYMBOL_.VAR,4);
SET-COL(F1 ,72);
if LOC-.VAR(Z).CHKPT_.ORIG then
if LOC..VAR(Z) .CHKPT-COMPLETE then
PUT-LINE(Fl,"MKRs rcvd from all nodes,Send CHKPT.COMP");

else
PUT-LINE(F1,"I originated CHKPT. Not all HKRs yet rcvd");

end if;
else
if not LOC-VAR(Z) .LOCAL-.CHKPT then
PUT-LINE(Fl,"Local CHKPT conducted. Send uniq in MR.");

else
PUT.LINE(Fl,"Local CHKPT already conducted. Store UNIQ");

end if;
end if;

when 2 =>
SET-COL(F2,25);
PUT(F2,"C-P rcvd MKR from Node V");
PUT(F2,M.ORIGJN_.NODE,i);

61

SET-.COL(F2,60);
PUT(F2,"EVNT V");
PUT(F2,M.MSG-.BODY.UNIQ(1) .SYMBOLVAR,4);
SET-COL(F2,72);
if LOC.VAR(Z).CHKPT-ORIG then
if LOC..VAR(Z) .CHKPT-COMPLETE then
PUT-LINE(F2,"MKRs rcvd from all nodesSend CHKPT-COMP");

else
PUT..LINE(F2,"I originated CHKPT. Not all MKRs yet rcvd");

end if;
else

if not LOC-.VAR(Z) .LOCALSCHKPT then
PUT-LINE(F2,"Local CHKPT conducted. Send uniq in MKR.");

else
PUT-LINE(F2,"Local CHKPT already conducted. Store UNIQ");

end if;
end if;

when 3 =>
SET-COL(F3,25);
PUT(F3,"C-.P rcvd MKR from Node V');
PUT(F3,M.ORIG-FN-.NODE, 1);
SET-COL(F3,60);
PUT(F3,"EVNT V");
PUTCF3,M.MSG-.BODY.UNIQ(1) .SYMBOL..VAR)4);
SET..COL(F3,72);
if LCYAR(Z) .CHKPT..ORIG then

if LOC-VAR(Z) .CHKPT-COMPLETE then
PUT-.LINE(F3,"MKRs rcvd from all nodes,Send CHKPT_.COMP");
else
PUT-.LINE(F3,"I originated CHKPT. Not all MKRs yet rcvd");

end if;
else
if not LOC-.VAR(Z) .LOCAL-.CHKPT then
PUT-.LINE(F3,"Local CHKPT conducted. Send uniq in MKR.");

else
PUT-LINE(F3,"Local CHKPT already conducted. Store UNIQ");

end if;
end if;

when 4 ->
SET-.COL(F4,25);
PUT(F4,C-.P rcvd KKR from Node S");
PUT(F4,M.ORIG-.FN-NODE, 1);
SET-.COL(F4,60);
PUT(F4,"EVNT #"1);
PUT(F4,M.MSG-.BDY.UNIQ(1).SYMBOLVAR,4);
SET-.COL(F4,72);
if LOC-.VAR(Z).CHKPT..RIG then
if LOC-VAR(Z) .CHKPT-.COMPLETE then
PUT-LINE(F4,"MKRs rcvd from all nodes,Send CHKPTCOMP");

else
PUT-LINE(F4,"I originated CHKPT. Not all MXRs yet rcvd");

62

end if;
else
if not LOC-.VAR(Z).LOCAL.CHKPT then
PUT-LINE(F4,"Local CHKPT conducted. Send uniq in MKR.");

else
PUT-LINE(F4,"Local CHKPT already conducted. Store UIJIQ");
end if;

end if;
when others =>

NULL;
end case;
if FLG then

M :- GM;
end if;

end MKRMSG;

-Procedure Checkpoint Complete Message processes a CHKPT message
-that was built in the Status Message section. It resets all
-flags set during the checkpointing process, and it copies
-checkpoint data into the backup NST (NSTBAK).

procedure CHK..P-CMPLTJ. SG (M :in MSG-.RECORD; NID in integer) is
Z,Y integer M.ORIG_.FN_.NODE;
PT float 0.0;

begin
NSTBAK(NID) :=ST(NID);
Z :=NST(NID).NODEID;
LOC-.VAR(NID).FIRST-.MKR FALSE;
LOC..VAR(NID).CHKPT-.ORIG FALSE;
GET-.REAL-.TIME(Z ,PT);
LOC...VAR(NID).CHKPTTIMER : PT;
GET-REAL-IME(Z,PT);
case Z is

when 1 =>
SET-COL(F1,25);
PUT(Fl,"C-.P rcvd CHKPT from Node 8"I);
PUT (F1.,M .ORIG-.FN-.NODE, 1);
SET-.COL(F1,60);
PUT(Fl,"EVNT #)
PUT(Fl,M.MSG..BODY.UNIQ(1) .SYMBOLVAR,4);
SET.COL(F1 ,72);
if Z - Y then
PUT-LINE(F,"'CHKPT orig. Global CHKPT complete store NST");

else
PUT-LINE(Fl,"Global CHKPT complete store NST");

end if;
when 2 ->

SET..COL(F2,25);
PUT(F2,"C-P rcvd CHKPT from Node V");
PUT(F2,M.ORIG-FN-.NODE,1);
SET-COL(F2,60);

63

PUT(F2,"EVNT V");
PUT(F2,M.MSG-BODY.UNIQ(1) .SYMBOL-.VAR,4);
SET-COL(F2,72);
if Z = Y then
PUT.LINE(F2,"CHKPT orig. Global CHKPT complete store NST");

else
PUT-LINE(F2,"Global CHKPT complete store NST");

end if;
when 3 =>

SET-.COL(F3,25);
PUT(F3,'C-P rcvd CHKPT from Node V");
PUT(F3,M.ORIG-FN-NODE, 1);
SET-COL(F3,60);
PUT(F3,"EVNT V");
PUT(F3 ,M .MSG-.BODY .UNIQ(1) .SYMBOLVAR,4);
SET-COL(F3,72);
if Z = Y then
PUT-LINE(F3,"CHKPT orig. Global CHKPT complete store NST");

else
PUT-LINE(F3, "Global CHKPT complete store NST");

end if;
when 4 =>

SET-.COL(F4,25);
PUT(F4,"C-P rcvd CHKPT from Node V");
PUT (F4,M.ORIG-FN_.NODE, 1);
SET-.COL(F4,60);
PUT(F4,"IEVNT V");
PUT(F4,M.MSG..BODY'.UNIQ(1) .SYMBOL..VAR,4);
SET-COL(F4,72);
if Z = Y then
PUT-.LINE(F4,"CHKPT orig. Global CHKPT complete store NST");

else
PUT-LINE(F4,"Global CHKPT complete store NST");

end if;
when others =>

NULL;
end case;
if NST(NID).NODE-ID = Y then -- CHKPT orig clears MKR array

for I in 1..4 loop
LOC-AR(NID).CHKPT-.TAKEN(I): 0;

end loop;
end if;

end CHK.PTSCMPLT-ISG;
end PROCESS;

with FLOAT-INOUT; use FLOATINOUT;
with MATH; use MATH;
with RANDOM; use RANDOM;
with PROCESS; use PROCESS;
with TEXT-IO, integer.io;

64

use TEXTIO, integerio;
package TRAND is

-- Procedure Test Random is a random integer generator
-- which normalizes the random variable to the desired
-- range as indicated by the parameter.

procedure TEST-RANDOM (VAR in out integer);
end TRAND;

package body TRAND is
procedure TEST-RANDOM (VAR in out integer) is

X : float;
begin

delay 2.0;
X :- RANDOM.NEXTNUMBER;
if VAR = 4 then

VAR integer(X * 4.0);
while VAR = 0 loop -- X4 must be an integer in the

-- interval 1-4 (# of node)
delay 1.0;
X := RANDOM.NEXTNUMBER; -- calls the function
VAR := integer(X * 4.0);

end loop;
else

if VAR = 12 then
VAR : integer(X * 12.0);
while VAR = 0 loop -- VAR must be an integer in the

-- interval 1-12 (# of function)
delay 1.0;
X := RANDOM.NEXTNUMBER; -- calls the function
VAR := integer(X * 12.0);

end loop;
else

-- get a delay parameter
VAR := integer(-(1.0/0.5) * NATLOG(1.0 - X));
while VAR = 0 loop -- the delay must be an integer

-- greater than 0.
delay 1.0;
X := RANDOM.NEXTNUMBER; -- calls the function
VAR := integer(X * 4.0);

end loop;
end if;

end if;
end TEST_RANDOM;
end TRAND;

with DECLARATIONS; use DECLARATIONS;
package COMMNET is
task NETWORK is

65

entry SENDMSG(M : in MSG-RECORD; NID : in integer);
end;
end COMMNET;

-- The following package statements create instantiations of the
-- indicated package utilized in the formation of a node.

with OUTS;
package OUTS1 is new OUTS;
with OUTS;
package OUTS2 is new OUTS;
with OUTS;
package OUTS3 is new OUTS;
with OUTS;
package OUTS4 is new OUTS;
with INS;
package INS1 is new INS;
with INS;
package INS2 is new INS;
with INS;
package INS3 is new INS;
with INS;
package INS4 is new INS;
with SM;
package SM1 is new SM;
with SM;
package SM2 is new SM;
with SM;
package SM3 is new SM;
with SM;
package SM4 is new SM;
with CKPT;
package CKPT1 is new CKPT;
with CKPT;
package CKPT2 is new CKPT;
with CKPT;
package CKPT3 is new CKPT;
with CKPT;
package CKPT4 is new CKPT;
with RL;
package RL1 is new RL;
with RL;
package RL2 is new RL;
with RL;
package RL3 is new RL;
with RL;
package RL4 is new RL;
with textio; use textio;
with integer_io; use integerio;
with number_io;use number_io;
with DECLARATIONS; use DECLARATIONS;

66

with PROCESS; use PROCESS;
with TRAND; use TRAND;
with INSi; use INSi;
with INS2; use INS2;
with INS3; use INS3;
with INS4; use INS4;

package body COMMNET is

-- The NETWORK task manages a circular queue,receiving messages
-- from the Output Server task and relaying them to all the
-- Input Server tasks. It serves as the communication interface
-- between nodes.

task body NETWORK is
W,R integer;
MGEN : MSG-RECORD;
MSG-PRESENT : boolean := false;
DT : DURATION := 2.57;
begin

loop
select

accept SEND-MSG (M: in MSGRECORD;NID: in integer) do
NULL;

end;
or

delay DT;
MSG-PRESENT := false;
W :* NET_Q.MSGCNT;
R : NET_Q.RD_CNT;
if NETQ.MSGTOSEND then

if R > W then
MGEN := NETQ.MSGQUE(R);
R := R + 1;
if R > QSIZE then

if W < 2 then
NETQ.MSG-TOSEND : false;
NETQ.BLOCKWRITE false;

end if;
NETQ.RDCNT : 1;

else
NETQ.RDCNT :R;

end if;
else

if R < W then
MGEN := NETQ.MSGQUE(R);
R :- R + 1;
if W a R then

NETQ.BLOCK_WRITE : false;
NETQ.MSGTOSEND :z false;

end if;

67

NETQ.RDCNT := R;
end if;

end if;
MSG-PRESENT := true;

end if;
if MSG-PRESENT then

for Z in 1..4 loop
W : LOCVAR(Z).INQ.MSGCNT;
R : LOCVAR(Z).INQ.RDCNT;
if not LOCVAR(Z).INQ.BLOCK_WRITE then

if W >= R then
LOCVAR(Z).INQ.MSGQUE(W) : MGEN;
LOCVAR(Z).IN.MSGTOSEND true;
W := W + 1;
if W > QSIZE then

if R < 2 then
LOCVAR(Z).INQ.BLOCKWRITE true;

end if;
LOCVAR(Z).INQ.MSGCNT 1;

else
LOCVAR(Z).INQ.MSGCNT W;

end if;
else

if W < R then
LOCVAR(Z).INQ.MSGQUE(W) MGEN;
LOCVAR(Z).INQ.MSGTOSEND true;
W := W + 1;
if W = R then

LOC-VAR(Z).INQ.BLOCKWRITE true;
end if;
LOCVAR(Z).INQ.MSGCNT W;

end if;
end if;

end if;
end loop; -- end for loop

end if;
end select;

end loop;
end NETWORK;
end COMMNET;

vith DECLARATIONS; use DECLARATIONS;
generic
package INS is
task NODEINITIALIZER is

entry BUILDNODE(NID: in integer);
end;
task INPUT-SERVER is

entry RECEIVEMSG(M : in MSGRECORD; NID in integer);
end;

68

end INS;

with textio; use textio;
with integerio; use integer-io;
with numberio;use number.io;
with PROCESS; use PROCESS;
with DECLARATIONS; use DECLARATIONS;
with COMMNET; use COMMNET;
with TRAND; use TRAND;
with RLI; use RL1;
with RL2; use RL2;
with RL3; use RL3;
with RL4; use RL4;
with SM1; use SM1;
with SM2; use SM2;
with SM3; use SM3;
with SM4; use SM4;
with CKPT1; use CKPT1;
with CKPT2; use CKPT2;
with CKPT3; use CKPT3;
with CKPT4; use CKPT4;
package body INS is

-- The NODEINITIALIZER task is utilized to initialize the node's NST,
-- to be utilized in the simulation process.

task body NODEINITIALIZER is
x,z : integer;

begin
loop

select
accept BUILDNODE(NID: in integer) do

x := 1;
z := NID;
-- this loop builds the function location array - this
-- would normally be initialized by the task allocation
-- which is only done in psuedo code at this time
for J in 1..12 loop

NST(z).COMMONSECTION.FNLOC(J) := x;
x :W x + 1;
if x = 5 then

x 1;
end if;

end loop;
NST(z).NODEID := NID;
-- this loop initializes all nodes to the "up" status
-- within each of the NST's
for J in 1..4 loop

NST(z).COMMONSECTION.NODESTATLD(1,J) 1;
NST(z).COMMONSECTION.NODESTATLD(2,J) J;

69

end loop;
NSTBAK(z) := NST(z); -- make backup copy of NST's

end;
or

terminate;
end select;

end loop;
end;

-- The INPUT-SERVER task accepts messages from the NETWORK task.
-- It parses the message fields and calls the appropriate task
-- to process the message.

task body INPUT-SERVER is
Z,W,R,i : integer;
MGEN : MSGRECORD;
PT : float : 0.0;
MSG-PRESENT boolean := false;
DT : DURATION := 1.35;

begin
loop

select
-- msg being accepted from the network
accept RECEIVE-MSG (M: in MSGRECORD;NID: in integer) do

Z :- NST(NID).NODEID;
end;

or
delay DT;
MSG-PRESENT := false;
W : LOCVAR(Z).INQ.MSGCNT;
R : LOCVAR(Z).INQ.RDCNT;
if LOCVAR(Z).INQ.MSGO_.SEND then

if R > W then
MGEN := LOCVAR(Z).INQ.MSGQUE(R);
R := R + 1;
if R > QSIZE then

if W < 2 then
LOCVAR(Z).INQ.MSGTOSEND :t false;
LOCVAR(Z).INQ.BLOCKWRITE : false;

end if;
LOCVAR(Z).INQ.RD.CNT : 1;

else
LOCVAR(Z).INQ.RDCNT R;

end if;
else

if R < W then
MGEN := LOCVAR(Z).INQ.MSGQUE(R);
R :- R + 1;
if W = R then

LOC-VAR(Z).INQ.BLOCK-WRITE : false;
LOCVAR(Z).INQ.MSGTOSEND : false;

70

end if ;
LOC-.VAR(Z).INQ.RD..CNT :=R;

end if;
end if;
MSG-PRESENT :=true;

end if;
if MSG-.PRESENT then

LOCVAR(Z).EVNT-CNT :- LOC-VAR(Z).EVNT-CNT + 1;
GET..REAL-.TIME (0,PT);
MGEN.TOR :=PT;
case Z is -- call specific section of own node

when 1 =>
case MGEN.CNTRL..ACTION is
when MKR ! CHKPT =>
if NST(Z) .COMMON-.SECTION.NODE-.STAT.LD(1, 1) = 1 then
CKPTI.C11ECK-.PT.MARJKER...MSG(MGEN, 1);

end if;
when FNON !FNOFF =>
if NST(Z) .COMNON-.SECTICN.NODESTAT-LD(1 ,) = 1 then
RL1 .RECONF-.LAYER. IS-MSG-.IN(MGEN, 1);

end if;
when STATUS =>
SMi .STATUS-.REC.STAT..MSG.REC(MGEN. 1);

when others =>
NULL;

end case;
when 2 =>
case MGEN.CNTRL..ACTION is
when MKR ! CHKPT =>
if NST(Z).COMMON-.SECTION.NODE.STA-LD(1,2) = 1 then
CKPT2.CHECK-PT MARKER-MSG(MGEN, 2);,
end -if;

when FNON ! FNOFF =>
if NST(Z).COMION-.SECTION.NJDE-.STATLD(1,2) = 1 then
RL2.RECONF-.LAYER. IS-.MSG..IN (MGEN, 2);
end if;

when STATUS =>
SM2.STATUS ..REC.STAT-.MSG-.REC (MGEN, 2);

when others =>
NULL;

end case;
when 3 ->
case MGEN.CNTRL-.ACTION is
when MKR ! CHKPT ->
if NST(Z).COMMON-.SECTION.NODE-.STA-LD(1,3) - 1 then
CKPT3 .HECKPT MARKER-.MSG (MGEN ,3);

end if;
when FNON I FNOFF =>
if NST(Z).COMMON-.SECTION.NODE-.STAT-LD(1,3) = 1 then
RL3.RE2ONF-.LAYER. IS.MSG-IN(MGEN,3);

end if;

71

when STATUS =>
SM3.STATUSREC.STAT_MSGREC(MGEN,3);
when others =>
NULL;

end case;
when 4 =>
case MGEN.CNTRLACTION is
when MKR ! CHKPT ->
if NST(Z).COMMONSECTION.NODESTATLD(1,4) = 1 then
CKPT4.CHECKPT.MARKERMSG(MGEN,4);

end if;
when FNON ! FNOFF =>
if NST(Z).COMMONSECTION.NODESTATLD(1,4) = 1 then
RL4.RECONFLAYER.ISMSGIN(MGEN,4);

end if;
when STATUS =>
SM4.STATUSREC.STATMSGREC(MGEN,4);

when others =>
NULL;

end case;
when others =>
NULL;

end case;
end if;

end select;
end loop;

end;
end INS;

with DECLARATIONS; use DECLARATIONS;
generic
package OUTS is
task OUTPUT-SERVER is

entry STARTOUTPUT(M : in MSG-RECORD; NID in integer);
end;
end OUTS;

with text-io; use textio;
with integerio; use integeri-.i;
with number.io;use number.io;
with PROCESS; use PROCESS;
with TRAND; use TRAND;
with DECLARATIONS; use DECLARATIONS;
with COMMNET; use COMMNET;
package body OUTS is

-- The OUTPUT-SERVER task relays messages from the various tasks
-- within the node, to the communication layer (NETWORK task).
-- The task serializes a node's messages and ensures that the

72

-- NETWORK can accept it.

task body OUTPUT-SERVER is
Z,W,R integer;
MGEN MSGRECORD;
PT :float 0.0;
MSG-.PRESENT boolean : false;
DT :DURATION :=3.83;

begin
loop

select
accept START-OUTPUT(M: in MSG-.RECORD;NID: in integer) do

Z :=NST(NID).NODE.ID;
end;

or
delay DT;
MSG-.PRESENT :=false;
W LOC-.VAR(Z).UT.MSGCNT;
R LOC-VAR(Z).OUTQ.RDCNT;
if LOC-YAR(Z) .OUTQ.MSGTOSEND then

if R > W then
MGEN :=LOC-VAR(Z) .OUTQ.MSG-QUE(R);
R :=R + 1;
if R > QSIZE then

if W < 2 then
LOC..VAR(Z) .OUTQ.MSG-TO-SEND false;
LOC-.VAR(Z) .OUTQ.BLOCKWRITE false;

end if;
LOC-VAR(Z).OUTQ.RD_CNT 1;

else
LOC-VAR(Z).OUTQ.RD_.CNT R

end if;
else

if R < W then
MGEN :=LOC-VAR(Z) .OUTQ.MSG..QUE(R);
R :=R + 1;
if W = R then

LOC-VAR(Z) .OUTQ.BLOCKWRITE false;
LOC-.VAR(Z) .OUTQ.MSG.TOSEND false;

end if;
L00.VAR(Z).OUTQ.RDCNT:=R

end if;
end if;
MSG-.PRESENT :=true;

end if;
if MSG-.PRESENT then
GET-.REALTIME(0 ,PT);
MGEN.TOT :=PT;
LOC-.VAR(Z).EVNT-CNT-.OUT :=LOC-.VAR(Z).EVNL-CNT-.OUT + 1;
MGEN .MSG-.BODY .UNIQ(1) .SYMBOL-.VAR :- LOC..YAR(Z) .EVNTCNTUT;
W : NET-Q.MSG_.CNT;

7 3

R :=NET_.Q.RDCNT;
if not NET-.BLOCK-.WRITE then
if W >= R then
NET-.Q.MSG-.QUE(W) MGEN;
NET-.Q.MSG-.TO-.SEND :true;
W := W + 1;
if W > Q...SIZE then
if R < 2 then
NET-.Q.BLOCK-.WRITE true;
end if;
NETQ.MSGCNT 1;

else
NET..Q.MSG-.CNT W

end if;
else
if W < R then
NET-Q.MSG-QUE(W) MGEN;
NET-Q.MSG-TO-SEND true;
W :=W + 1;
if W = R then
NET-Q.BLOCK.WRITE : true;
end if;
NET-Q.MSG_.CNT :=W;

end if;
end if;

end if;
case Z is

when 1 =>
GET-REAL-TIME(1 ,PT);
SET-COL(F1 ,25);
PUT(F,tO-.S sending)

case MGEN.CNTRL-.ACTION is
when MKR =>

PUT(F , "MKR msg.");
when FNON =>

PUT(F1,"FNON msg.");
when FNOFF =>

PUT(Fl,"FNOFF to Node S");
PUT(FI ,MGEN.DEST-.NODE, 1);

when STATUS =>
PUT(Fl,"STATUS msg.");

when CHKPT =>
PUT(F1,"CHKPT msg."):

when others =>
NULL;

end case;
SET..COL(F1 ,60);
PUT(Fl,"EVNT V");
PUT(F1 ,LOC-VAR(Z) .EVNT-CNT-OUT,4);
NEW...LINE(Fl);

when 2 =>

74

GET-REAL-TIME(2,PT);
SET-COL(F2 ,25);
PUT(F2,"O-S sending")
case MGEN.CNTRL-ACTION is

when MKR =>
PUT(F2,"MKR msg.");

when FNON =>
PUT(F2,"FNON msg.");

when FNOFF =>
PUT(F2,'FNOFF to Node V");
PUT(F2,MGEN.DEST-NODE,1);

when STATUS =>
PUT(F2 ,"STATUS msg.");

when CHKPT =>
PUT(F2,"CHKPT msg.");

when others =>
NULL;

end case;
SET-.COL(F2,60);
PUT(F2,"EVNT #");
PUT(F2,LOC-VAR(Z) .EVNT-CNT-.OUT,4);
NEW..LINE(F2);

when 3 =>
GET-REAL-TIME (3, PT);
SET-COL(F3,25);
PUT(F3,"O..S sending)
case MGEN.CNTRL-ACTION is

when MKR =>
PUT(F3,"MKR msg.");

when FNON =>
PUT(F3,"FNON msg.");

when FNOFF =>
PUT(F3,"FNOFF to Node V");
PUT(F3,MGEN.DEST-.NODE, 1);

when STATUS =>
PUT(F3,"STATUS msg.");

when CHKPT =>
PUT(F3,"CHKPT msg.");

when others =>
NULL;

end case;
SET-COL(F3,60);
PUT(F3,"EVNT V");
PUT,(F3,LOC-VAR(Z) .EVNT..C&T..OUT,4);
NEW-.LINE(F3);

when 4 ->
GE7-.REAL-TIME (4 ,PT);
SET-COL(F4,25);
PUT(F4,"0..S sending")
case MGEN.CNTRL-AC7ION is

when MKR>

75

PUT(F4,"MKR msg.");
when FNON =>

PUT(F4,"FNON msg.");
when FNOFF =>

PUT(F4,"FNOFF to Node #");
PUT(F4,MGEN.DESTNODE,1);

when STATUS =>
PUT(F4,"STATUS msg.");

when CHKPT =>
PUT(F4,"CHKPT msg.");

when others =>
NULL;

end case;
SETCOL(F4,60);
PUT(F4,"EVNT #");
PUT(F4,LOCVAR(Z).EVNTCNTOUT,4);
NEWLINE(F4);

when others =>
NULL;

end case;
end if; -- end if msg present
end select;

end loop;
end;
end OUTS;

with DECLARATIONS; use DECLARATIONS;
generic
package CKPT is
task CHECKPT is

entry MARKERMSG(M in MSG-RECORD; NID in integer);
entry CHKPTCOMP(M in MSG-RECORD; NID in integer);

end;
task EVENTCNT is

entry EVNTCNTFULL(NID : in integer);
end;
end CKPT;

with textio; use textio;
with integer.io; use integer-io;
with number_io;use number-io;
with PROCESS; use PROCESS;
with DECLARATIONS; use DECLARATIONS;
with COMMNET; use COMMNET;
package body CKPT is

-- The CHECKPT task is called by the INPUT-SERVER when a
-- marker (MKR) or checkpoint complete (CHKPT) message is
-- received. This task calls MKRMSG or CHKPTCMPLTMSG

76

-- respectfully, for further processing of the messages.

task body CHECK-.PT is
!4GEN MSG_.RECORD;
FLG boolean;
Z,W,R integer;

begin
loop

select
accept MARKER-MSG CM: in MSG_.RECORD;NID: in integer) do

Z :=NST(NID).NODEID;
MGEN M;
FLG FALSE;
case M.CNTRL-ACTION is

when MKR =>
PROCESS.MKR-MSG(MGEN, Z, FLG);
if FLG then

W :LOC-.VAR(Z).OUTQ.MSG-CNT;
R: LOC-AR(Z).OUTQ.RD_CNT;
if not LOC-.VAR(Z).OUTQ.BLOCKWRITE then

if W >= R then
LOCVAR(Z) .OUTQ.MSG_.QUE(W) :MGEN;
LOC-.VAR(Z) .OUTQ.MSG-O-.SEND :true;

W := W + 1;
if W > Q_.SIZE then

if R < 2 then
LOC-.VAR(Z) .OUTQ.BLOCK_.WRITE :true;

end if;
LOC-.VAR(Z).OUTQ.MSG-.CNT :1;

else
LOC-..VAR(Z).OUTQ.MSG-.CNT W;

end if;
else

if W < R then
LOC-YAR(Z) .OUTQ.MSG-.QUE(W) :MGEN;
LOC-VAR(Z) .OUTQ.MSG-TO-.SEND :true;
W := W + 1.;
if W - R then
LOCVAR(Z) .OUTQ.BLOCKWRITE :true;

end if;
LOC-VAR(Z).OUTQ.MSGCNT W;

end if;
end if;

end if;,
end if;

when CHKPT a

Z :- NST(NID) .NODEID;
PROCESS .CHK..YL.CMPLT_.MSG CM, Z);

when others
null;

77

end case;
end;

or
terminate;

end select;
end loop;

end;

-- The EVENTCNT task monitors the events at a node and originates
-- the checkpoint process once a predetermined number of events has
-- occurred.

task body EVENTCNT is
MGEN MSG-RECORD;
FLG boolean;
Z,W,R integer;
CNT integer := 10;
PT float := 0.0;

begin
loop

select
accept EVNTCNTFULL(NID in integer) do

Z := NST(NID).NODE_ID; -- initialize for simulation
CNT := CNT * NID;

end;
or

delay 33.7;
GETREALTIME(O,PT);
if LOCVAR(Z).CHKPTORIG and

PT-LOC-VAR(Z).CHKPTTIMER > 68.1 then
LOC-VAR(Z).LOCALCHKPT := false;
LOC-VAR(Z).FIRSTMKR FALSE;
LOCVAR(Z).CHKPTORIG FALSE;
LOC-VAR(Z).CHKPTTIMER PT;
for I in 1..4 loop

LOCVAR(Z).CHKPTTAKEN(I) := 0;
end loop;
case Z is

when 1 =>
GETREALTIME(1,PT);
SETCOL(F1,72);

PUTLINE(Fl,"CHKPT unsuccessful. Restarting CHKPT");
when 2 ->

GETREALTIME(2,PT);
SETCOL(F2,72);

PUTLINE(F2,"CHKPT unsuccessful. Restarting CHKPT");
when 3 =>

GETREALTIME(3,PT);
SETCOL(F3,72);

PUTLINE(F3,"CHKPT unsuccessful. Restarting CHKPT");
when 4 ->

78

GET-REAL-TIME (4, PT);
SET-COL(F4,72);

FUT-.LINE(F4, "CHKPT unsuccessful. Restarting CHKPT");
when others =>

NULL;
end case;

end if;
if LOC-.VAR(Z).EVNL-CNT > CNT and

not LOC-.VAR(Z).LOCAL-.CHKPT then
ST(Z) :=NST(Z);
MGEN.ORIG-N-.NODE :=Z;
MGEN.MSG-.KIND :- control;
MGEN.CNTRL-.ACTION :=MKR;
LOC-IAR(Z).EVNT-.CNT: 0;
MGEN.MSG-.BODY.UNIQ :NST(Z) .UNIQUE-.SECTION(Z);
LOC-.VAR(Z).LOCAL_.CHKPT true;
LOCVAR(Z).CHKPT-TIMER PT;
W LOC-VAR(Z).OUTQ.MSG-CNT;
R LOC-.VAR(Z).OUTQ.RD-.CNT;
if not LOC-VAR(Z).OUTQ.BLOCKWRITE then

if W >= R then
LOC..VAR(Z) .OUTQ.MSG..QUE(W) MGEN;
LOC-.VAR(Z) .OUTQ.MSG_T0..SEKi) true;
W :=W + 1;
if W > Q-.SIZE then

if R < 2 then
LOC-.VAR(Z) .OUTQ.BLOCKWRITE true;

end if;
LOC-VAR(Z).OUTQ.MSG.CNT 1;

else
LOC-VAR(Z).OUTQ.MSG-CNT W

end if;
else

if W < R then
LOC-.VAR(Z) .OUTQ.MSG-QUE(W) :MGEN;
LOC..VAR(Z) .OUTQ.MSGTOSEND true;
W :=W + 1;
if W - R then

LOC-VAR(Z) .OUTQ.BLOCK-WRITE :true;
end if;
LOC-VAR(Z).OUTQ.MSG-CNT W;

end if;
end if;

end if;
end if;

end select;
end loop;

end;
end CKPT;

79

with DECLARATIONS; use DECLARATIONS;
generic
package RL is
task RECONFLAYER is

entry ISMSGIN(M : in MSGRECORD; NID in integer);
end;
end RL;

with text_io; use textio;
with integerio; use integerio;
with number_io;use numberio;
with PROCESS; use PROCESS;
with DECLARATIONS; use DECLARATIONS;
with COMMNET; use COMMNET;
package body RL is

-- The RECONFLAYER task is called by the INPUT-SERVER task
-- to process both FNON and FNOFF messages.
-- It calls procedures FNONREC nad FN-OFFREC to process
-- these types of messages.

task body RECONFLAYER is
-- specific calls may need to pass a msg back out
-- if so, set the -- msg flag

MSG-FLAG boolean FALSE;
MGEN MSGRECORD;
Z,C,W,R integer;

begin
loop

select
-- input server c 1 RL with a msg to send
accept ISMSGIN t: in MSGRECORD; NID : in integer) do

Z :- NST(NID).NODEID;
MGEN := M;

-- the RL determines whether a fn needs to be started or terminated
-- in the active fn queue - it will notify the application layer to
-- take the required action

case M.CNTRLACTION is
when FNON ->

PROCESS.FNONMSG(M, NID);
when FNOFF =>

PROCESS.FNOFFMSG(MGEN, Z, MSGFLAG);
if MSG-FLAG then -- msg needs to go to OS but

-- will add msg to out queue
-- to get processed by OS

W : LOCVAR(Z).OUTQ.MSGCNT;
R := LOC_3AR(Z).UTQ.RDCNT;
if not LOCVAR(Z).OUTQ.BLOCKWRITE then

if W >- R then

80

LOC-VAR(Z) .OUTQ.MSG-QUE(W) :MGEN;
LOC-.VAR(Z) .OUTQ.MSG-.T0..SEND true;
W := W + 1;
if W > Q_.SIZE then

if R < 2 then
LOC-VAR(Z) .OUTQ.BLOCK-WRITE true;

end if;
LOC..VAR(Z).UTQ.MSG-CNT :1;

else
LOC-.VAR(Z).OUTQ.MSG-CNT :W;

end if;
else

if W < R then
LOC-VAR(Z) .OUTQ.MSG.QUE(W) MGEJ;
LOC-VAR(Z) .OUTQ.MSG_TO-.SEND true;
W :=W + 1;
if W = R then
LOC-VAR(Z) .OUTQ.BLOCKWRITE true;

end if;
LOC-VAR(Z).OUTQ.MSGCNT W;

end if;
end if;

end if;
MSG-.FLAG FALSE;

end if;
-hen others =>

NULL;
end case;
end;

or
terminate;

end select;
end loop;

end;
end RL;

with DECLARATIONS; use DECLARATIONS;
generic
package SM is
task STATUS-.REC is

entry STAT'tSG-.REC(M :in MSG-.RECORD; NID in integer);
end;
task STATUS-.BDCST is

entry STATBDCSTCHK(NID :in integer);
end;
end SM;

with FLOAT-INOUT; use FLOAT-INOUT;

with text..io; use text.io;

81

with integerio; use integer.io;
with number_io;use number_io;
with PROCESS; use PROCESS;
with DECLARATIONS; use DECLARATIONS;
with COMMNET; use COMMNET;
package body SM is

-- The STATUSBDCST task generates periodic status messages
-- for the node. Also incorporated in this task is the
-- Timeout routine , which implements node failure detection.

task body STATUSBDCST is
MGEN MSGRECORD;
FLG boolean;
SB boolean :- false;
Z,C,W,R : integer;
PT float := 0.0;

begin
loop

select
accept STATBDCSTCHK(NID: in integer) do

Z := NST(NID).NODE_ID;
end;

or
delay 15.0;
GETREALTIME(O,PT);
for I in 1..4 loop

if NST(Z).CMMONSECTION.NODESTATLD(1,I) = 1 and
PT - LOCVAR(Z).TIMER(I) > 65.0 then
NST(Z).COMMONSECTION.NODESTATLD(1,I) 0;
case Z is

when 1 =>
GETREALTIME(1,PT);
SETCOL(F1,25);
PUT(F,"SM detects FAILURE on Node #");
PUT(F1,I,1);
SET_COL(FI,72);
PUTLINE(F,"Notify NF task.");

when 2 ->
GETREALTIME(2,PT);
SETCOL(F2,25);
PUT(F2,"SM detects FAILURE on Node #");
PUT(F2,I,1);
SETCOL(F2,72);
PUTLINE(F2,"Notify NF task.");

when 3 ->
GETREALTIME(3,PT);
SETCOL(F3,25);
PUT(F3,"SM detects FAILURE on Node #");
PUT(F3,I,1);
SETCOL(F3,72);

82

PUT-LINE(F3,"Notify NF task.");
when 4 =>

GET-REAL-TIME (4,T;
SET-COL(F4,25);
PUT(F4,"S-.M detects FAILURE on Node #)
PUI*(F4,I,1);
SETCOL(F4,72);
PUT-LINE(F4,"Notify NF task.");

when others>
NULL;

end case;
end if;

end loop;
if NST(Z) .COMMON-.SECTION.NODE.STAT-.LD(1,Z) =1

and not FAILED-.NODE(Z then
if PT - LOC-.VAR(Z).TIMER(Z) > 44.0 then

MGEN.DEST-.NODE 1;
MGEN.DEST-.FUNC Z
MGEN.CNTRL-.ACTION STATUS;
MGEN.ORIG-FN-.NODE Z;
MGEN.MSG-.KIND :=control;
W LOC-VAR(Z).OUTQ.MSG_CNT;
R :LOC-.VAR(Z).OUTQ.RD_.CNT;
if not LOC-VAR(Z).OUTQ.BLOCKWRITE then

if W >= R then
LOC-VAR(Z) .OUTQ .MSQ.QUE(W) MGEN;
LOC-.VAR(Z) .OUTW.MSGO_.SEND true;
W :- W + 1;
if W > Q-SIZE then

if R < 2 then
LOC-.VAR(Z) .OUTQ.BLOCKWRITE :=true;

end if;
LOC-.VAR(Z).OUTQ.MSG_.CNT 1;

else
LOC-.VAR(Z).OUTQ.MSG-CNT W;

end if;
else

if W < R then
LOC-.VAR(Z) .OUTQ.MSG-.QUE(W) :MGEN;
LOC-.VAR(Z) .OUTQ.MSG_TO_.SEND :true;
W :- W + 1;
if W aR then

LOC..VAR(Z) .OUTQ.BLOCK-.WRITE :true;
end if;
LOC-AR(Z).OUTQ.MSG-CNT W;

end if;
end if;

end if;
end if;

end if;
end select;

83

end loop;
end;

-The STATUS-.REC task is called by the INPUT-SERVER when a
-status message is received. In turn this task calls the
-STATUS-MSG procedure for further processing.

task body STATUS-.REC is
MGEN :MSGRECORD;
FLG :boolean;
SB boolean :=false;
ZC,W,R :integer;
PT float :=0.0;

begin
loop

select
accept STAT-.MSG..3EC (M:in MSG_.RECORD;NID: in integer) do

Z :=NST(NID).NODE-.ID;
MGEN M
FLG FALSE;
LOC-.VAR(Z) .TIMER(MGEN.ORIG-N..NODE) :=M.TOT;
PROCESS.STAT-.MSG(MGEN, Z, FLG);
if FLG then

W :LOC-.VAR(Z).OUTQ.MSG_.CNT;
R :LOC-.VAR(Z).OUTQ.RD_.CNT;

if not LOC-VAR(Z).OUTQ.BLOCKWRITE then
if W >= R then

LOC-VAR(Z) .OUTQ.MSG..QUE(W) :=MGEN;
LOC-.VAR(Z) .OUTQ.MSG.TO..SEND :=true;
W :=W + 1;
if Wi > Q_.SIZE then

if R < 2 then
LOC-VAR(Z) .OUTQ.BLOCK-.WRITE true;

end if;
LOC-.VAR(Z).OUTh.MSG_.CNT 1;

else
LOC-.VAR(Z).OUTQ.MSG_.CNT W

end if;
else

if W < R then
LOC-VAR(Z) .OUTQ.MSG-.QUE(W) :~MGEN;
LOC-VAR(Z) .OtTQ.MSGJO...SEND :trrp:
W := W + 1;
if W - R then
LOC-AR(Z).UTQ.BLOCK_WRITE :true;

end if;
LCC-AR(Z).UTQ.MSG-.CNT :-W

end if;
end if;

end if;

84

end if;
end;

or
terminate;

end select;
end loop;

end;
end SM;

with DECLARATIONS; use DECLARATIONS;
package FP is
task EVENT-MAKER is

entry NEWEVENT(NID: in integer);
end;
end FP;

with FLOAT_INOUT; use FLOAT_INOUT;
with textio; use textio;
with integerio; use integerio;
with numberio;use numberio;
with TRAND; use TRAND;
with calendar; use calendar;
with DECLARATIONS; use DECLARATIONS;
with PROCESS; use PROCESS;
package body FP is

-- The EVENT-MAKER task is utilized to simulate an actual
--distributed processing system.

task body EVENT-MAKER is
MGEN,outmsg : MSGRECORD;
x,Z,W,R : integer;
N : integer := 0;
EN,ON,DN : integer;
MSGBUFEMPTY : boolean := false;
MSG-PRESENT boolean := false;
PT float : 0.0;
ST DURATION := 63.15;
begin -- begin Front-End Processor

loop
select

accept NEWEVENT(NID: in integer) do
Z :- NID;

end;
or

delay ST;
N :a N + 1;
MSGPRESENT := false;
EN .= 12;
TRAND.TESTRANDOM(EN);

85

EN := EN mod 2;
case EN is

when 1 =>
MSG-PRESENT := true;
outmsg.CNTRLACTION := FNOFF;
ON := 4;
TRAND.TEST_RANDOM(ON);--get an active random orig node

WHILE NST(Z).COMMONSECTION.NODESTATLD(I,ON) = 0 loop
delay 2.0;
CN := 4;
TRAND.TESTRANDOM(ON);

end loop; -- end while loop
outmsg.ORIGFNNODE := ON;
DN := 4;
'iRAND.TESTRANDOM(DN);--get an active random dest

--node that is not = to the orig node
WHILE NST(Z).COMMONSECTION.NODESTATLD(1,DN) = 0

or DN = ON loop
delay 2.0;
DN := 4;
TRAND.TESTRANDOM(DN);

end loop; -- end while loop
outmsg.DESTNODE := DN;
x := 1; -- get an active fn from orig. node
while NST(Z).COMMONSECTION.FNLOC(x) /= ON

and x < 13 loop
x := x + 1;

end loop;
if x < 13 then

outmsg.DESTFUNC := x;
else

MSG-PRESENT := false;
end if;
outmsg.MSGBODY.UNIQ(1).REGISTERVAL DN;
outmsg.MSGKIND := CONTROL;

when 0 =>
ON :- 4;
TRAND.TESTRANDOM(ON);
WHILE NST(Z).COMMONSECTION.NODESTATLD(1,ON)=O loop

ON :- 4;
TRAND.TESTUANDOM(ON);

end loop; -- end while loop
if not FAILEDNODE(ON) then

FAILEDNODE(ON) :- true;
end if;
case ON is

when 1 =>
GETREALTIME(1,PT);
SETCOL(Fl,25);
PUTLINE(F1,"FP generating Node FAILURE");

86

when 2 =>
GETREALTIME(2,PT);
SETCOL(F2,25);
PUTLINE(F2,"FP generating Node FAILURE");

when 3 =>
GETREALTIME(3,PT);
SETCOL(F3,25);
PUTLINE(F3,"FP generating Node FAILURE");

when 4 ->
GETREALTIME(4,PT);
SETCOL(F4,25);
PUTLINE(F4,"FP generating Node FAILURE");

when others =>
NULL;

end case;
MSG-PRESENT := false;

when others =>
null;

end case;
if MSG-PRESENT then

MGEN := outmsg;
Z MGEN.ORIGFNNODE;
W LOCVAR(Z).UTQ.MSGCNT;
R LOCVAR(Z).OUTQ.RDCNT;
if not LOCVAR(Z).OUTQ.BLOCKWRITE then

LOCVAR(Z).OUTQ.MSGQUE(W) : MGEN;
LOCVAR(Z).OUTQ.MSGTOSEND true;
W := W + 1;
if W > QSIZE then

LOCVAR(Z).OUTQ.MSGCNT 1;
end if;
if W = R then

LOCVAR(Z).OUTQ.BLOCKWRITE := true;
else

LOCVAR(Z).UTQ.MSG_CNT W;
end if;

end if;
end if;

end select;
end loop;

end;
end FP;

with text-io; use text.io;
with integer-io; use integer-io;
with number-io;use numberio;
with FLOATINOUT; use FLOATINOUT;
with calendar; use calendar;
with DECLARATIONS; use DECLARATIONS;
with PROCESS; use PROCESS;

87

with COMMNET; use COMMNET;
with FP; use FP;
with OUTS1; use OUTS1;
with OUTS2; use OUTS3;
with OUTS3; use OUTS3;
with OUTS4; use OUTS4;
with INS1; use INSI;
with INS2; use INS2;
with INS3; use INS3;
with INS4; use INS4;
with SMi; use SMi;
with SM2; use SM2;
with SM3; use SM3;
with SM4; use SM4;
with RL1; use RL1;
with RL2; use RL2;
with RL3; use RL3;
with RL4; use RL4;
with CKPT1; use CKPT1;
with CKPT2; use CKPT2;
with CKPT3; use CKPT3;
with CKPT4; use CKPT4;

-- The procedure FEP is utilized to open individual
-- output files for each node. It also initiates each node's
-- NST for simulation purposes and assigns each task its
-- node identification number.

procedure FEP is
MGEN,outmsg : MSGRECORD;
Z,W,R : integer;
PT : float :- 0.0;
begin -- begin Front-End Processor

OPEN(F1 ,MODE=>OUTFILE,NAME=>"NOUT1I");
OPEN(F2,MODE=>DUTFILE,NAME=>"NOUT2");
OPEN(F3,MODE=>OUTFILE,NAME=>"NOUT3");
OPEN(F4,MODE=>OUTFILE,NAME=>"NOUT4");
INSi.NODEINITIALIZER.BUILDNODE(1);
INS2.NODEINITIALIZER.BUILDNODE(2);
INS3.NODEINITIALIZER.BUILDNODE(3);
INS4.NODEINITIALIZER.BUILDNODE(4);
GETREALTIME(O,PT);
for L in 1..4 loop

for N in 1..4 loop --initialize periodic time array
--of each node

LOCVAR(L).TIMER(N) :- PT + float(N * 0.1);
end loop;
case L is -- give identity to tasks within packages

when I =>
SMI.STATUSBDCST.STATBDCSTCHK(1);
CKPT1.EVENT.CNT.EVNTCNTFULL(1);

88

INS1.INPUT-.SERVER.RECEIVE-.MSG(outmsg, 1);
OUTS 1.OUTPUT-SERVER. START-OUTPUT(outmsg, 1);

when 2 =>
SM2.-STATUS .BDCST.STAT-BDCST-.CHK(2);
CKPT2.EVENT-CNT.EVNT-CNT-FULL (2);
INS2.INPUT-SERVIER.RECEIVE-.MSG(outmsg,2);
OUTS2.OUTPUT-SERVER.START..OUTPUT(outmsg, 2);

when 3 ->
SM3.STATUS..BDCST.STAT-BDCST-.CHK(3);
CKPT3.EVENT.CNT.EVNT-CNL-FULL (3);
INS3. INPUT-SERVER. RECEIVE-.MSG(outmsg, 3);
OUTS3 .OUTPUT-SE RVER. START-OUTPUT (outmsg, 3);

when 4 =>
SM4 .STATUS-.BDCST .STAT-BDCST-.CHK(4);

CKPT4 .EVENT-CNT .EVNT-.CNT..FULL (4);
INS4 .INPUT-SERVER.RECEIVE-.MSG(outmsg,4);
OUTS4 .OUTPUL.SERVER. START-OUTPUT(outmsg ,4);

when others =>
NULL;

end case;
end loop:
FP .EVENL. MAKER. NEW-.EVENT (1);

end FEP;

89

APPENDIX B: SIMULATION OUTPUT
/* The output is given in its entirety. The specific events */
/* pertaining to this thesis have been provided in timming */
/* diagrams listed in previous chapters */
/* The first column indicates the time of occurrence. Column two */
/* specifies which node is active, and column three indicates what *1
/* event is taking place. Column four designates the event number */
/* of the node which sent the message. The node which sent the *1
/* message is listed in the previous column. The last column, */
/* which appears on a new line, explains what action is done at */
/* the active node (column two). */

39429.76000 Node #1 OS sending STATUS msg. EVNT # 1
39432.64000 Node #1 SM rcvd PERIODIC from Node #1 EVNT # 1

Reset Timer element of Node #1
39435.37000 Node #1 SM rcvd PERIODIC from Node #2 EVNT # 1

Reset Timer element of Node #2
39438.11000 Node #1 SM rcvd PERIODIC from Node #3 EVNT # 1

Reset Timer element of Node #3
39440.85000 Node #1 SM rcvd PERIODIC from Node #4 EVNT # 1

Reset Timer element of Node #4
39450.88000 Node #1 FP generating Node FAILURE
39492.55000 Node #1 SM rcvd PERIODIC from Node #3 EVNT # 2

Reset Timer element of Node #3
39495.29000 Node #1 SM rcvd PERIODIC from Node #4 EVNT # 2

Reset Timer element of Node #4
39498.03000 Node #1 SM rcvd PERIODIC from Node #2 EVNT # 2

Reset Timer element of Node #2
39503.76000 Node #1 SM detects FAILURE on Node #1

Notify NF task.
39551.09000 Node #1 SM rcvd PERIODIC from Node #3 EVNT # 3

Reset Timer element of Node #3
39552.63000 Node #1 OS sending STATUS msg. EVNT # 2
39553.81000 Node #1 SM rcvd PERIODIC from Node #4 EVNT # 4

Reset Timer element of Node #4
39556.53000 Node #1 SM rcvd PERIODIC from Node #2 EVNT # 4

Reset Timer element of Node #2
39559.25000 Node #1 SM rcvd APERIODIC from Node #1 EVNT # 2

This is the recovering node.
39561.97000 Node #1 SM rcvd APERIODIC from Node #3 EVNT # 4

This is the recovering node.
39564.69000 Node #1 SM rcvd APERIODIC from Node 84 EVNT # 5

This is the recovering node.
39567.41000 Node #1 SM rcvd APERIODIC from Node #2 EVNT # 5

Recovery complete - send PERIODIC msg.
39567.99000 Node #1 OS sending STATUS msg. EVNT # 3

90

39570.13000 Node #1 SM rcvd PERIODIC from Node #1 EVNT # 3
Reset Timer element of Node #1

39587.19000 Node #1 OS sending MKR msg. EVNT # 4
39590.53000 Node #1 CP rcvd MKR from Node #1 EVNT # 4

I originated CHKPT. Not all MKRs yet rcvd.
39593.25000 Node #1 CP rcvd MKR from Node #3 EVNT # 5

I originated CHKPT. Not all MKRs yet rcvd.
39594.87000 Node #1 OS sending FNOFF to Node #2 EVNT # 5
39595.97000 Node #1 CP rcvd MKR from Node #4 EVNT # 6

I originated CHKPT. Not all MKRs yet rcvd.
39598.69000 Node #1 CP rcvd MKR from Node #2 EVNT # 6

MKRs rcvd from all nodes. Send CHKPTCOMP
39598.71000 Node #1 OS sending CHKPT msg. EVNT # 6
39600.05000 Node #1 R.L rcvd FNOFF from Node #1 EVNT # 5

No further action required ATT.
39602.77000 Node #1 CP rcvd CHKPT from Node #1 EVNT # 6

CHKPT orig. Global CHKPT complete store NST
39605.49000 Node #1 RL rcvd FNON from Node #2 EVNT # 7

I am the deactivating node and changing NST
2 2 3 2 1 2 3 4 1 2 3 4

39610.93000 Node #1 SM rcvd PERIODIC from Node #3 EVNT # 6
Reset Timer element of Node #3

39625.58000 Node #1 OS sending STATUS msg. EVNT # 7
39625.89000 Node #1 SM rcvd PERIODIC from Node #1 EVNT # 7

Reset Timer element of Node #1
39628.61000 Node #1 SM rcvd PERIODIC from Node #4 EVNT # 7

Reset Timer element of Node #4
39631.33000 Node #1 SM rcvd PERIODIC from Node #2 EVNT # 8

Reset Timer element of Node #2

39429.76000 Node #2 OS sending STATUS msg. EVNT # 1
39432.66000 Node #2 SM rcvd PERIODIC from Node #1 EVNT # 1

Reset Timer element of Node #1
39435.39000 Node #2 SM rcvd PERIODIC from Node #2 EVNT # 1

Reset Timer element of Node #2
39438.13000 Node #2 SM rcvd PERIODIC from Node #3 EVNT # 1

Reset Timer element of Node #3
39440.87000 Node #2 SM rcvd PERIODIC from Node #4 EVNT # I

Reset Timer element of Node #4
39491.22000 Node #2 OS sending STATUS msg. EVNT S 2
39492.57000 Node #2 SM rcvd PERIODIC from Node #3 EVNT S 2

Reset Timer element of Node #3
39495.31000 Node #2 S.M rcvd PERIODIC from Node #4 EVNT # 2

Reset Timer element of Node #4
39498.05000 Node #2 SM rcvd PERIODIC from Node #2 EVNT # 2

Reset Timer element of Node #2
39503.76000 Node #2 SM detects FAILURE on Node #1

Notify NF task.
39523.90000 Node #2 RL rcvd FNOFF from Node #4 EVNT # 3

91

FNON sent to activate FN 8 4
39525.78000 No #2 OS sending FNON msg. EVNT 9 3
39528.00000 Node #2 RL rcvd FN.ON from Node #2 EVNT * 3

I am the activating node and changing NST.
1 2 3 2 1 2 3 4 1 2 3 4

39548.80900 Node #2 OS sending STATUS msg. EVNT * 4
39551.17900 Node #2 SM rcvd PERIODIC from Node #3 EVNT # 3

Reset Timer element of Node #3
39553.91000 Node #2 SM rcvd PERIODIC from Node #4 EVNT S 4

Reset Timer element of Node #4
39556.64000 Node #2 SM rcvd PERIODIC from Node #2 EVNT 8 4

Reset Timer element of Node #2
39559.37000 Node #2 SM rcvd APERIODIC from Node #1 EVNT S 2

Sending APERIODIC with NST unique sections.
39560.32000 Node #2 OS sending STATUS msg. EVNT # 5
39562.11000 Node #2 SM rcvd APERIODIC from Node #3 EVNT # 4

APERIODIC response already sent, no action.
39564.84000 Node #2 SM rcvd APERIODIC from Node #4 EVNT # 5

APERIODIC response already sent, no action.
39567.57000 Node #2 SM rcvd APERIODIC from Node #2 EVNT # 5

APERIODIC response already sent, no action.
39570.30000 Node #2 SM rcvd PERIODIC from Node #1 EVNT 8 3

Reset Timer element of Node #1
39590.71000 Node #2 CP rcvd MKR from Node #1 EVNT # 4

Local CHKPT already conducted. Store UNIQ.
39591.04000 Node #2 OS sending MKR msg. EVNT 8 6
39593.44000 Node #2 CP rcvd MKR from Node #3 EVNT 8 5

Local CHKPT already conducted. Store UNIQ.
39596.17000 Node #2 CP rcvd MKR from Node #4 EVNT # 6

Local CHKPT already conducted. Store UNIQ.
39597.54000 Node #2 CP rcvd MKR from Node #2 EVNT # 6

Local CHKPT already conducted. Store UNIQ.
39600.27000 Node #2 RL rcvd FNOFF from Node #1 EVNT # 5

FNON sent to activate FN # 1
39602.54000 Node #2 OS sending FNON msg. EVNT # 7
39603.00000 Node #2 CP rcvd CHKPT from Node #1 EVNT # 6

Global CHKPT complete store NST
39605.74000 Node #2 RL rcvd FNON from Node #2 EVNT # 7

I am the activating node and changing NST.
2 2 3 2 1 2 3 4 1 2 3 4

39611.20000 Node #2 SM rcvd PERIODIC from Node #3 EVNT 8 6
Reset Timer element of Node #3

39625.59000 Node #2 OS sending STATUS msg. EVNT 8 8
39626.17000 Node #2 SM rcvd PERIODIC from Node #1 EVNT 0 7

Reset Timer element of Node #1
39628.90000 Node #2 SM rcvd PERIODIC from Node #4 EVNT # 7

Reset Timer element of Node #4
39631.63000 Node #2 SM rcvd PERIODIC from Node #2 EVNT # 8

Reset Timer element of Node #2

92

39429.77000 Node #3 OS sending STATUS msg. EVNT # 1
39432.65000 Node #3 S.M rcvd PERIODIC from Node #1 EVNT S 1

Reset Timer element of Node #1
39435.37900 Node #3 SM rcvd PERIODIC from Node #2 EVNT # 1

Reset Timer element of Node #2
39438.12000 Node #3 SM rcvd PERIODIC from Node #3 EVNT 0 1

Reset Timer element of Node #3
39440.86000 Node #3 SM rcvd PERIODIC from Node #4 EVNT # 1

Reset Timer element of Node #4
39491.19000 Node #3 O.S sending STATUS msg. EVNT # 2
39492.56000 Node #3 SM rcvd PERIODIC from Node #3 EVNT # 2

Reset Timer element of Node #3
39495.30000 Node #3 SM rcvd PERIODIC from Node #4 EVNT # 2

Reset Timer element of Node #4
39498.04000 Node #3 SM rcvd PERIODIC from Node #2 EVNT # 2

Reset Timer element of Node #2
39503.76900 Node #3 SM detects FAILURE on Node #1

Notify NF task.
39523.89000 Node #3 RL rcvd FNOFF from Node #4 EVNT # 3

No further action required ATT.
39527.99000 Node #3 RL rcvd FNON from Node #2 EVNT # 3

Neither act/deact node and changing NST.
1 2 3 2 1 2 3 4 1 2 3 4

39548.80000 Node #3 OS sending STATUS msg. EVNT # 3
3j551.16000 Node #3 SM rcvd PERIODIC from Node #3 EVNT 8 3

Reset Timer element of Node #3
39553.90000 Node #3 SM rcvd PERIODIC from Node #4 EVNT # 4

Reset Timer element of Node #4
39556.63000 Node #3 SM rcvd PERIODIC from Node #2 EVNT # 4

Reset Timer element of Node #2
39559.36000 Node #3 SM rcvd APERIODIC from Node #1 EVNT # 2

Sending APERIODIC vith NST unique sections.
39560.31000 Node #3 O.S sending STATUS msg. EVNT # 4
39562.10000 Node #3 SM rcvd APERIODIC from Node #3 EVNT # 4

APERIODIC response already sent, no action.
39564.83000 Node #3 SM rcvd APERIODIC from Node #4 EVNT # 5

APERIODIC response already sent, no action.
39567.56000 Node #3 SM rcvd APERIODIC from Node #2 EVNT # 5

APERIODIC response already sent, no action.
39570.29000 Node #3 SM rcvd PERIODIC from Node #1 EVNT # 3

Reset Timer element of Node #1
39590.70000 Node #3 CP rcvd MKR from Node #1 EVNT # 4

Local CHKPT already conducted. Store UNIQ.
39591.03000 Node #3 OS sending MKR msg. EVNT # 5
39593.43000 Node #3 CP rcvd MKR from Node #3 EVNT # 5

Local CHKPT already conducted. Store UNIQ.
39596.16000 Node #3 CP rcvd MKR from Node #4 EVNT # 6

Local CHKPT already conducted. Store UNIQ.
39597.53000 Node #3 CP rcvd MKR from Node #2 EVNT # 6

Local CHKPT already conducted. Store UNIQ.

93

39600.26000 Node #3 RL rcvd FNOFF from Node #1 EVNT # 5
No further action required ATT.

39602.99000 Node #3 CP rcvd CHKPT from Node #1 EVNT # 6
Global CHKPT complete store NST

39605.73000 Node #3 RL rcvd FNON from Node #2 EVNT # 7
Neither act/deact node and changing NST.
2 2 3 2 1 2 3 4 1 2 3 4

39610.22000 Node #3 OS sending STATUS msg. EVNT # 6
39611.19000 Node #3 SM rcvd PERIODIC from Node #3 EVNT # 6

Reset Timer element of Node #3
39626.16000 Node #3 SM rcvd PERIODIC from Node #1 EVNT # 7

Reset Timer element of Node #i
39628.89000 Node #3 SM rcvd PERIODIC from Node #4 EVNT # 7

Reset Timer element of Node #4
39631.62000 Node #3 SM rcvd PERIODIC from Node #2 EVNT # 8

Reset Timer element of Node #2

39429.78000 Node #4 OS sending STATUS msg. EVNT # 1
39432.66000 Node #4 SM rcvd PERIODIC from Node #1 EVNT # 1

Reset Timer element of Node #1
39435.38000 Node #4 SM rcvd PERIODIC from Node #2 EVNT # 1

Reset Timer element of Node #2
39438.12000 Node #4 SM rcvd PERIODIC from Node #3 EVNT # 1

Reset Timer element of Node #3
39440.86000 Node #4 SM rcvd PERIODIC from Node #4 EVNT # 1

Reset Timer element of Node #4
39491.22000 Node #4 OS sending STATUS msg. EVNT # 2
39492.56000 Node #4 SM rcvd PERIODIC from Node #3 EVNT # 2

Reset Timer element of Node #3
39495.30000 Node #4 SM rcvd PERIODIC from Node #4 EVNT # 2

Reset Timer element of Node #4
39498.04000 Node #4 S.M rcvd PERIODIC from Node #2 EVNT # 2

Reset Timer element of Node #2
39503.77000 Node #4 SM detects FAILURE on Node #1

Notify NF task.
39521.94000 Node #4 OS sending FNOFF to Node #2 EVNT # 3
39523.90000 Node #4 RL rcvd FNOFF from Node #4 EVNT # 3

No further action required ATT.
39528.00000 Node #4 RL rcvd FNON from Node #2 EVNT # 3

I am the deactivating node and changing NST
1 2 3 2 1 2 3 4 1 2 3 4

39548.80000 Node #4 OS sending STATUS msg. EVNT # 4
39551.17000 Node #4 SM rcvd PERIODIC from Node #3 EVNT # 3

Reset Timer element of Node #3
39553.90900 Node #4 SN rcvd PERIODIC from Node #4 EVNT # 4

Reset Timer element of Node #4
39556.63900 Node #4 SM rcvd PERIODIC from Node #2 EVNT # 4

Reset Timer element of Node #2

94

39559.37000 Node #4 SM rcvd APERIODIC from Node #1 EVNT * 2
Sending APERIODIC with NST unique sections.

39560.31000 Node #4 OS sending STATUS msg. EVNT # 5
39562.10900 Node #4 SM rcvd APERIODIC from Node #3 EVNT # 4

APERIODIC response already sent, no action.
39564.84000 Node #4 SM rcvd APERIODIC from Node #4 EVNT # 5

APERIODIC response already sent, no action.
39567.57000 Node #4 SM rcvd APERIODIC from Node #2 EVNT S 5

APERIODIC response already sent, no action.
39570.29900 Node #4 SM rcvd PERIODIC from Node #1 EVNT # 3

Reset Timer element of Node #1
39590.70000 Node #4 CP rcvd MKR from Node #1 EVNT # 4

Local CHKPT already conducted. Store UNIQ.
39591.03000 Node #4 OS sending MKR msg. EVNT S 6
39593.43000 Node #4 CP rcvd MKR from Node #3 EVNT # 5

Local CHKPT already conducted. Store UNIQ.
39596.16000 Node #4 CP rcvd MKR from Node #4 EVNT # 6

Local CHKPT already conducted. Store UNIQ.
39597.53000 Node #4 CP rcvd MKR from Node #2 EVNT # 6

Local CHKPT already conducted. Store UNIQ.
39600.26000 Node #4 RL rcvd FNOFF from Node #1 EVNT # 5

No further action required ATT.
39602.99900 Node #4 CP rcvd CHKPT from Node #1 EVNT 8 6

Global CHKPT complete store NST
39605.74000 Node #4 RL rcvd FNON from Node #2 EVNT # 7

Neither act/deact node and changing NST.
2 2 3 2 1 2 3 4 1 2 3 4

39611.19900 Node #4 SM rcvd PERIODIC from Node #3 EVNT # 6
Reset Timer element of Node #3

39625.58000 Node #4 OS sending STATUS msg. EVNT # 7
39626.17000 Node #4 SM rcvd PERIODIC from Node #1 EVNT # 7

Reset Timer element of Node #1
39628.90000 Node #4 SM rcvd PERIODIC from Node #4 EVNT # 7

Reset Timer element of Node #4
39631.62900 Node #4 SM rcvd PERIODIC from Node #2 EVNT # 8

Reset Timer element of Node #2

95

REFERENCES

1. Shukla S., Yang C., Puett R., Lehman K., Masters M., "A Framework for Node
Failure/Repair Transparency in Distributed Real-time Systems," paper submit-
ted to the Fault Tolerant Computing International Symposium, Boston, MA,
1992.

2. Puett, R., Reconfiguration in Robust Distributed Real-Time Systems Based on
Global Checkpoints, Master's Thesis, Naval Postgraduate School, Monterey, Cal-
ifornia, DEC 1991.

3. Shirazi B., Wang M. Pathak G., "Analysis and Evaluation of Heuristic Methods
for Static Task Scheduling," Journal of Parallel and Distributed Computing 10,
pp 222-232, 1990.

4. Deitel H.M., Operating Systems, pp. 500-550, Addison-Wesley Co., 1990.

5. Lo V.M., "Heuristic Algorithms for Task Assignment in Distributed Systems,"
IEEE Transaction on Computers, Vol 37, No. 11, pp 1384-1397, NOV 1988.

6. Chu W.W., Holloway L.J., Lan M-T, Efe K., "Task Allocation in Distributed
Data Processing," Computer, Vol 13, pp 57-69, NOV 1980.

7. Houstis C.E., "Module Allocation of Real-Time Applications to Distributed Sys-
tems," IEEE Transactions on Software Engineering, Vol 16, No. 7, pp 699-708,
JUL 1990.

8. Ma P-Y.R., Lee E.Y.S., Tsuchiya M., "A Task Allocation Model for Distributed
Computing Systems," IEEE, Vol C-31, pp 41-47, No. 1, JAN 1982.

9. Chu W.W., Lan NM.T., "Task Allocation and Precedence Realations for Dis-
tributed Real-Time Systems," IEEE Transactions on Computers, Vol 36, No.
6, pp 57-69, JUN 1987.

10. Williams E.A., "Assigning Processes to Processors in Distributed Systems," Pro-
ceedings IEEE Conference on Parallel Processing, pp 404-406, 1983.

11. Shin K.G., Chang Y.C., "Load Sharing in Distributed Real-Time Systems with
State-Change Broadcasts," IEEE Transactions on Computers, Vol 38, No. 8, pp
1124-1143, AUG 1989.

12. Ramamritham K., Stankovic J.A., Zhao W., "Distributed Scheduling of Tasks
with Deadlines and Resource Requirements," IEEE Transactions on Computers,
Vol 38, No. 8, AUG 1989.

96

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2

Cameron Station

Alexandria, VA 22304-6145

2. Library, Code 52 2

Naval Postgraduate School

Monterey, CA 93943-5000

3. Chairman, Code EC

Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, CA 93943-5000

4. Professor Shridhar B. Shukla, Code EC/Sh

Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, CA 93943-5000

5. Professor Chyan Yang, Code EC/Ya

Department of Electrical and Co-iputer Engineering

Naval Postgraduate School

Monterey, CA 93943-50(3

6. Commanding Officer
Supervisor of Shipbuilding

97

Conversion and Repair, USN

Pascagoula, MS 39568-2210

7. Michael W. Masters, Code N35

Naval Surface Warfare Center

Dahlgren, VA 22448-5000

9

98

